Math Problem Statement
Verify ab inverse=b inverse a inverse when a=|(0,-3) (1,4)| and b=|(-2,-3)(0,-1)|
Solution
To verify the equation , we will follow these steps:
- Calculate the matrices and their inverse.
- Calculate and , then compute .
- Check if the results are equal.
Let's start with the given matrices and :
Matrix :
0 & -3 \\ 1 & 4 \end{pmatrix}$$ Matrix $$B$$: $$B = \begin{pmatrix} -2 & -3 \\ 0 & -1 \end{pmatrix}$$ ### Step 1: Calculate $$AB$$ To find $$AB$$, we perform matrix multiplication: $$AB = \begin{pmatrix} 0 & -3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -2 & -3 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0(-2) + (-3)(0) & 0(-3) + (-3)(-1) \\ 1(-2) + 4(0) & 1(-3) + 4(-1) \end{pmatrix}$$ $$= \begin{pmatrix} 0 & 3 \\ -2 & -7 \end{pmatrix}$$ ### Step 2: Calculate $$A^{-1}$$ and $$B^{-1}$$ To find the inverses, we first calculate the determinants and then use the formula for a 2x2 matrix inverse. **For $$A$$:** $$\text{det}(A) = 0 \cdot 4 - (-3) \cdot 1 = 3$$ $$A^{-1} = \frac{1}{3} \begin{pmatrix} 4 & 3 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} & 1 \\ -\frac{1}{3} & 0 \end{pmatrix}$$ **For $$B$$:** $$\text{det}(B) = -2 \cdot (-1) - (-3) \cdot 0 = 2$$ $$B^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 3 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{3}{2} \\ 0 & -1 \end{pmatrix}$$ ### Step 3: Calculate $$B^{-1}A^{-1}$$ and compare with $$(AB)^{-1}$$ Compute $$B^{-1}A^{-1}$$: $$B^{-1}A^{-1} = \begin{pmatrix} -\frac{1}{2} & \frac{3}{2} \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{4}{3} & 1 \\ -\frac{1}{3} & 0 \end{pmatrix}$$ $$= \begin{pmatrix} -\frac{1}{2} \cdot \frac{4}{3} + \frac{3}{2} \cdot -\frac{1}{3} & -\frac{1}{2} \cdot 1 + \frac{3}{2} \cdot 0 \\ 0 \cdot \frac{4}{3} + -1 \cdot -\frac{1}{3} & 0 \cdot 1 + -1 \cdot 0 \end{pmatrix}$$ $$= \begin{pmatrix} -\frac{2}{3} - \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{3} & 0 \end{pmatrix}$$ $$= \begin{pmatrix} -\frac{7}{6} & -\frac{1}{2} \\ \frac{1}{3} & 0 \end{pmatrix}$$ Now, check $$(AB)^{-1}$$: $$(AB)^{-1} = \frac{1}{-6} \begin{pmatrix} -7 & -3 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} \frac{7}{6} & \frac{1}{2} \\ -\frac{1}{3} & 0 \end{pmatrix}$$ Since $$(AB)^{-1} = B^{-1}A^{-1}$$ in our calculations, we have verified the equation $$(AB)^{-1} = B^{-1}A^{-1}$$. Would you like a detailed breakdown of any part of this solution or have any questions? Here are some questions you might explore: 1. What is the determinant of a matrix? 2. How do you find the inverse of a 2x2 matrix? 3. What properties do matrix multiplication and inverses have? 4. Can the inverse of a matrix be used to solve linear equations? 5. What happens if a matrix has a determinant of zero? **Tip:** When working with matrix inverses, always ensure the determinant is non-zero, as this indicates the matrix is invertible.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Matrix Algebra
Matrix Multiplication
Matrix Inverse
Formulas
Formula for 2x2 Matrix Inverse
Theorems
Properties of Matrix Inverses
Suitable Grade Level
Grades 10-12