Math Problem Statement

If x = (2, 1 + i, i) and y = (2 - i, 2, 1 + 2i) then verify Schwarz's inequality

Solution

Schwarz's inequality (Cauchy-Schwarz inequality) for vectors states that for any vectors x\mathbf{x} and y\mathbf{y} in a complex inner product space, the following inequality holds:

x,y2x,xy,y| \langle \mathbf{x}, \mathbf{y} \rangle |^2 \leq \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle

Where:

  • x,y\langle \mathbf{x}, \mathbf{y} \rangle is the inner product of x\mathbf{x} and y\mathbf{y}.
  • x,y| \langle \mathbf{x}, \mathbf{y} \rangle | is the magnitude of the inner product.

Given vectors: x=(2,1+i,i),y=(2i,2,1+2i)\mathbf{x} = (2, 1 + i, i), \quad \mathbf{y} = (2 - i, 2, 1 + 2i)

Step 1: Compute x,y\langle \mathbf{x}, \mathbf{y} \rangle

The inner product of two vectors x\mathbf{x} and y\mathbf{y} in a complex space is:

x,y=k=1nxkyk\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k}

Where yk\overline{y_k} is the complex conjugate of yky_k.

  1. x1=2x_1 = 2, y1=2iy_1 = 2 - i: x1y1=2(2+i)=4+2ix_1 \overline{y_1} = 2(2 + i) = 4 + 2i

  2. x2=1+ix_2 = 1 + i, y2=2y_2 = 2: x2y2=(1+i)(2)=2+2ix_2 \overline{y_2} = (1 + i)(2) = 2 + 2i

  3. x3=ix_3 = i, y3=1+2iy_3 = 1 + 2i: x3y3=i(12i)=i2i2=i+2=2+ix_3 \overline{y_3} = i(1 - 2i) = i - 2i^2 = i + 2 = 2 + i

Now, sum these values: x,y=(4+2i)+(2+2i)+(2+i)=8+5i\langle \mathbf{x}, \mathbf{y} \rangle = (4 + 2i) + (2 + 2i) + (2 + i) = 8 + 5i

Step 2: Compute x,y2| \langle \mathbf{x}, \mathbf{y} \rangle |^2

First, find the magnitude of x,y\langle \mathbf{x}, \mathbf{y} \rangle:

x,y=8+5i=82+52=64+25=89| \langle \mathbf{x}, \mathbf{y} \rangle | = |8 + 5i| = \sqrt{8^2 + 5^2} = \sqrt{64 + 25} = \sqrt{89}

Now square the magnitude: x,y2=89| \langle \mathbf{x}, \mathbf{y} \rangle |^2 = 89

Step 3: Compute x,x\langle \mathbf{x}, \mathbf{x} \rangle and y,y\langle \mathbf{y}, \mathbf{y} \rangle

  1. x,x\langle \mathbf{x}, \mathbf{x} \rangle: x,x=(2)(2)+(1+i)(1+i)+(i)(i)\langle \mathbf{x}, \mathbf{x} \rangle = (2)(\overline{2}) + (1 + i)(\overline{1 + i}) + (i)(\overline{i}) =22+(1+i)(1i)+i(i)=4+(12i2)+1=4+(1+1)+1=4+2+1=7= 2^2 + (1 + i)(1 - i) + i(-i) = 4 + (1^2 - i^2) + 1 = 4 + (1 + 1) + 1 = 4 + 2 + 1 = 7

  2. y,y\langle \mathbf{y}, \mathbf{y} \rangle: y,y=(2i)(2i)+2(2)+(1+2i)(1+2i)\langle \mathbf{y}, \mathbf{y} \rangle = (2 - i)(\overline{2 - i}) + 2(\overline{2}) + (1 + 2i)(\overline{1 + 2i}) =(22+(i)(i))+22+(12+22)=(4+1)+4+(1+4)=5+4+5=14= (2^2 + (-i)(i)) + 2^2 + (1^2 + 2^2) = (4 + 1) + 4 + (1 + 4) = 5 + 4 + 5 = 14

Step 4: Verify the inequality

Now check if Schwarz's inequality holds: x,y2x,xy,y| \langle \mathbf{x}, \mathbf{y} \rangle |^2 \leq \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle

Substitute the values: 897×14=9889 \leq 7 \times 14 = 98

Since 899889 \leq 98, the Cauchy-Schwarz inequality is verified.

Would you like more details or have any questions?

Here are 5 related questions:

  1. How is the Cauchy-Schwarz inequality derived?
  2. What are some applications of Cauchy-Schwarz inequality in physics?
  3. Can the equality in Cauchy-Schwarz inequality ever hold?
  4. How do inner products differ in real and complex spaces?
  5. How can the Cauchy-Schwarz inequality be extended to matrices?

Tip: In complex spaces, always remember to use the complex conjugate in the inner product calculation!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Complex Numbers
Vector Spaces

Formulas

Cauchy-Schwarz inequality: |⟨x, y⟩|^2 ≤ ⟨x, x⟩⟨y, y⟩
Inner product: ⟨x, y⟩ = Σ x_k * conj(y_k)
Magnitude of a complex number: |a + bi| = sqrt(a^2 + b^2)

Theorems

Cauchy-Schwarz Inequality

Suitable Grade Level

Undergraduate Level (Math/Physics)