Schwarz's inequality (Cauchy-Schwarz inequality) for vectors states that for any vectors x \mathbf{x} x and y \mathbf{y} y in a complex inner product space, the following inequality holds:
∣ ⟨ x , y ⟩ ∣ 2 ≤ ⟨ x , x ⟩ ⟨ y , y ⟩ | \langle \mathbf{x}, \mathbf{y} \rangle |^2 \leq \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle ∣ ⟨ x , y ⟩ ∣ 2 ≤ ⟨ x , x ⟩ ⟨ y , y ⟩
Where:
⟨ x , y ⟩ \langle \mathbf{x}, \mathbf{y} \rangle ⟨ x , y ⟩ is the inner product of x \mathbf{x} x and y \mathbf{y} y .
∣ ⟨ x , y ⟩ ∣ | \langle \mathbf{x}, \mathbf{y} \rangle | ∣ ⟨ x , y ⟩ ∣ is the magnitude of the inner product.
Given vectors:
x = ( 2 , 1 + i , i ) , y = ( 2 − i , 2 , 1 + 2 i ) \mathbf{x} = (2, 1 + i, i), \quad \mathbf{y} = (2 - i, 2, 1 + 2i) x = ( 2 , 1 + i , i ) , y = ( 2 − i , 2 , 1 + 2 i )
Step 1: Compute ⟨ x , y ⟩ \langle \mathbf{x}, \mathbf{y} \rangle ⟨ x , y ⟩
The inner product of two vectors x \mathbf{x} x and y \mathbf{y} y in a complex space is:
⟨ x , y ⟩ = ∑ k = 1 n x k y k ‾ \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k} ⟨ x , y ⟩ = ∑ k = 1 n x k y k
Where y k ‾ \overline{y_k} y k is the complex conjugate of y k y_k y k .
x 1 = 2 x_1 = 2 x 1 = 2 , y 1 = 2 − i y_1 = 2 - i y 1 = 2 − i :
x 1 y 1 ‾ = 2 ( 2 + i ) = 4 + 2 i x_1 \overline{y_1} = 2(2 + i) = 4 + 2i x 1 y 1 = 2 ( 2 + i ) = 4 + 2 i
x 2 = 1 + i x_2 = 1 + i x 2 = 1 + i , y 2 = 2 y_2 = 2 y 2 = 2 :
x 2 y 2 ‾ = ( 1 + i ) ( 2 ) = 2 + 2 i x_2 \overline{y_2} = (1 + i)(2) = 2 + 2i x 2 y 2 = ( 1 + i ) ( 2 ) = 2 + 2 i
x 3 = i x_3 = i x 3 = i , y 3 = 1 + 2 i y_3 = 1 + 2i y 3 = 1 + 2 i :
x 3 y 3 ‾ = i ( 1 − 2 i ) = i − 2 i 2 = i + 2 = 2 + i x_3 \overline{y_3} = i(1 - 2i) = i - 2i^2 = i + 2 = 2 + i x 3 y 3 = i ( 1 − 2 i ) = i − 2 i 2 = i + 2 = 2 + i
Now, sum these values:
⟨ x , y ⟩ = ( 4 + 2 i ) + ( 2 + 2 i ) + ( 2 + i ) = 8 + 5 i \langle \mathbf{x}, \mathbf{y} \rangle = (4 + 2i) + (2 + 2i) + (2 + i) = 8 + 5i ⟨ x , y ⟩ = ( 4 + 2 i ) + ( 2 + 2 i ) + ( 2 + i ) = 8 + 5 i
Step 2: Compute ∣ ⟨ x , y ⟩ ∣ 2 | \langle \mathbf{x}, \mathbf{y} \rangle |^2 ∣ ⟨ x , y ⟩ ∣ 2
First, find the magnitude of ⟨ x , y ⟩ \langle \mathbf{x}, \mathbf{y} \rangle ⟨ x , y ⟩ :
∣ ⟨ x , y ⟩ ∣ = ∣ 8 + 5 i ∣ = 8 2 + 5 2 = 64 + 25 = 89 | \langle \mathbf{x}, \mathbf{y} \rangle | = |8 + 5i| = \sqrt{8^2 + 5^2} = \sqrt{64 + 25} = \sqrt{89} ∣ ⟨ x , y ⟩ ∣ = ∣8 + 5 i ∣ = 8 2 + 5 2 = 64 + 25 = 89
Now square the magnitude:
∣ ⟨ x , y ⟩ ∣ 2 = 89 | \langle \mathbf{x}, \mathbf{y} \rangle |^2 = 89 ∣ ⟨ x , y ⟩ ∣ 2 = 89
Step 3: Compute ⟨ x , x ⟩ \langle \mathbf{x}, \mathbf{x} \rangle ⟨ x , x ⟩ and ⟨ y , y ⟩ \langle \mathbf{y}, \mathbf{y} \rangle ⟨ y , y ⟩
⟨ x , x ⟩ \langle \mathbf{x}, \mathbf{x} \rangle ⟨ x , x ⟩ :
⟨ x , x ⟩ = ( 2 ) ( 2 ‾ ) + ( 1 + i ) ( 1 + i ‾ ) + ( i ) ( i ‾ ) \langle \mathbf{x}, \mathbf{x} \rangle = (2)(\overline{2}) + (1 + i)(\overline{1 + i}) + (i)(\overline{i}) ⟨ x , x ⟩ = ( 2 ) ( 2 ) + ( 1 + i ) ( 1 + i ) + ( i ) ( i )
= 2 2 + ( 1 + i ) ( 1 − i ) + i ( − i ) = 4 + ( 1 2 − i 2 ) + 1 = 4 + ( 1 + 1 ) + 1 = 4 + 2 + 1 = 7 = 2^2 + (1 + i)(1 - i) + i(-i) = 4 + (1^2 - i^2) + 1 = 4 + (1 + 1) + 1 = 4 + 2 + 1 = 7 = 2 2 + ( 1 + i ) ( 1 − i ) + i ( − i ) = 4 + ( 1 2 − i 2 ) + 1 = 4 + ( 1 + 1 ) + 1 = 4 + 2 + 1 = 7
⟨ y , y ⟩ \langle \mathbf{y}, \mathbf{y} \rangle ⟨ y , y ⟩ :
⟨ y , y ⟩ = ( 2 − i ) ( 2 − i ‾ ) + 2 ( 2 ‾ ) + ( 1 + 2 i ) ( 1 + 2 i ‾ ) \langle \mathbf{y}, \mathbf{y} \rangle = (2 - i)(\overline{2 - i}) + 2(\overline{2}) + (1 + 2i)(\overline{1 + 2i}) ⟨ y , y ⟩ = ( 2 − i ) ( 2 − i ) + 2 ( 2 ) + ( 1 + 2 i ) ( 1 + 2 i )
= ( 2 2 + ( − i ) ( i ) ) + 2 2 + ( 1 2 + 2 2 ) = ( 4 + 1 ) + 4 + ( 1 + 4 ) = 5 + 4 + 5 = 14 = (2^2 + (-i)(i)) + 2^2 + (1^2 + 2^2) = (4 + 1) + 4 + (1 + 4) = 5 + 4 + 5 = 14 = ( 2 2 + ( − i ) ( i )) + 2 2 + ( 1 2 + 2 2 ) = ( 4 + 1 ) + 4 + ( 1 + 4 ) = 5 + 4 + 5 = 14
Step 4: Verify the inequality
Now check if Schwarz's inequality holds:
∣ ⟨ x , y ⟩ ∣ 2 ≤ ⟨ x , x ⟩ ⟨ y , y ⟩ | \langle \mathbf{x}, \mathbf{y} \rangle |^2 \leq \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle ∣ ⟨ x , y ⟩ ∣ 2 ≤ ⟨ x , x ⟩ ⟨ y , y ⟩
Substitute the values:
89 ≤ 7 × 14 = 98 89 \leq 7 \times 14 = 98 89 ≤ 7 × 14 = 98
Since 89 ≤ 98 89 \leq 98 89 ≤ 98 , the Cauchy-Schwarz inequality is verified.
Would you like more details or have any questions?
Here are 5 related questions:
How is the Cauchy-Schwarz inequality derived?
What are some applications of Cauchy-Schwarz inequality in physics?
Can the equality in Cauchy-Schwarz inequality ever hold?
How do inner products differ in real and complex spaces?
How can the Cauchy-Schwarz inequality be extended to matrices?
Tip: In complex spaces, always remember to use the complex conjugate in the inner product calculation!