Math Problem Statement

Find the coordinate vector for each vector in the figure and perform various vector operations including addition, scalar multiplication, and solving for an unknown vector such that the sum is zero.

Solution

Let's walk through each part of the problem in the image:


Part a.

Given the coordinate vectors:
a=3,3,b=2,1,c=2,1\vec{a} = \langle 3, 3 \rangle, \quad \vec{b} = \langle -2, 1 \rangle, \quad \vec{c} = \langle 2, -1 \rangle

These vectors are already identified with their coordinate values.


Part b.

You are asked to draw the vector sum a+b+c\vec{a} + \vec{b} + \vec{c} and verify your answer through vector addition.

Adding the vectors: a+b+c=3,3+2,1+2,1\vec{a} + \vec{b} + \vec{c} = \langle 3, 3 \rangle + \langle -2, 1 \rangle + \langle 2, -1 \rangle

Perform the component-wise addition: (32+2,3+11)=3,3(3 - 2 + 2, 3 + 1 - 1) = \langle 3, 3 \rangle

Thus, the result is: 3,3\boxed{\langle 3, 3 \rangle}


Part c.

You are asked to find the sum 2a+3bc2\vec{a} + 3\vec{b} - \vec{c} and verify your answer.

Calculating the scalar products: 2a=23,3=6,62\vec{a} = 2 \cdot \langle 3, 3 \rangle = \langle 6, 6 \rangle 3b=32,1=6,33\vec{b} = 3 \cdot \langle -2, 1 \rangle = \langle -6, 3 \rangle c=2,1=2,1-\vec{c} = -\langle 2, -1 \rangle = \langle -2, 1 \rangle

Adding these vectors: 2a+3bc=6,6+6,3+2,12\vec{a} + 3\vec{b} - \vec{c} = \langle 6, 6 \rangle + \langle -6, 3 \rangle + \langle -2, 1 \rangle

Component-wise: (662,6+3+1)=2,10(6 - 6 - 2, 6 + 3 + 1) = \langle -2, 10 \rangle

Thus, the result is: 2,10\boxed{\langle -2, 10 \rangle}


Part d.

Find the sum x1a+x2b+x3cx_1 \vec{a} + x_2 \vec{b} + x_3 \vec{c} using the given scalars: x1=2,x2=4,x3=1x_1 = -2, \quad x_2 = 4, \quad x_3 = -1

Calculating the scalar products: 2a=23,3=6,6-2\vec{a} = -2 \cdot \langle 3, 3 \rangle = \langle -6, -6 \rangle 4b=42,1=8,44\vec{b} = 4 \cdot \langle -2, 1 \rangle = \langle -8, 4 \rangle 1c=12,1=2,1-1\vec{c} = -1 \cdot \langle 2, -1 \rangle = \langle -2, 1 \rangle

Adding these vectors: x1a+x2b+x3c=6,6+8,4+2,1x_1 \vec{a} + x_2 \vec{b} + x_3 \vec{c} = \langle -6, -6 \rangle + \langle -8, 4 \rangle + \langle -2, 1 \rangle

Component-wise: (682,6+4+1)=16,1(-6 - 8 - 2, -6 + 4 + 1) = \langle -16, -1 \rangle

Thus, the result is: 16,1\boxed{\langle -16, -1 \rangle}


Part e.

Find a vector d\vec{d} such that: a+c+d=0\vec{a} + \vec{c} + \vec{d} = \vec{0}

Rearrange the equation: d=(a+c)\vec{d} = -(\vec{a} + \vec{c})

First, add a+c\vec{a} + \vec{c}: a+c=3,3+2,1=5,2\vec{a} + \vec{c} = \langle 3, 3 \rangle + \langle 2, -1 \rangle = \langle 5, 2 \rangle

Now negate the result: d=5,2=5,2\vec{d} = -\langle 5, 2 \rangle = \langle -5, -2 \rangle

Thus, the vector d\vec{d} is: 5,2\boxed{\langle -5, -2 \rangle}


Summary of Answers

  • b. 3,3\langle 3, 3 \rangle
  • c. 2,10\langle -2, 10 \rangle
  • d. 16,1\langle -16, -1 \rangle
  • e. 5,2\langle -5, -2 \rangle

Would you like further explanations on any part of these calculations?


Related Questions:

  1. How do you find the magnitude of a vector?
  2. What is the geometric interpretation of adding vectors?
  3. How do scalar multiples affect a vector’s direction?
  4. What are some applications of vector addition in physics?
  5. How does the dot product differ from vector addition?

Tip: When adding vectors graphically, make sure to align them tip-to-tail to visualize the resulting vector.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Addition
Scalar Multiplication
Coordinate Geometry
Vector Equations

Formulas

Vector addition formula: \( \vec{a} + \vec{b} = \langle a_1 + b_1, a_2 + b_2 \rangle \)
Scalar multiplication formula: \( c\vec{a} = c \langle a_1, a_2 \rangle = \langle c \cdot a_1, c \cdot a_2 \rangle \)

Theorems

Properties of Vector Addition
Commutative Property of Addition
Associative Property of Addition

Suitable Grade Level

Grades 10-12