Math Problem Statement

Cho tứ giác lồi ABCD. P, Q là trung điểm AB, CD. O là trung điểm của PQ. M là điểm bất kỳ. CM: \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4 \overrightarrow{MO}.

Solution

We are given a convex quadrilateral ABCDABCD, where PP and QQ are the midpoints of ABAB and CDCD, respectively, and OO is the midpoint of PQPQ. The task is to prove the following vector equation for any point MM:

MA+MB+MC+MD=4MO.\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4 \overrightarrow{MO}.

Proof:

  1. Vector Sum for Midpoints: Since PP and QQ are midpoints, we have the following midpoint relations in terms of vectors: P=A+B2,Q=C+D2.\overrightarrow{P} = \frac{\overrightarrow{A} + \overrightarrow{B}}{2}, \quad \overrightarrow{Q} = \frac{\overrightarrow{C} + \overrightarrow{D}}{2}. Since OO is the midpoint of PQPQ, we can express O\overrightarrow{O} as: O=P+Q2=(A+B2)+(C+D2)2=A+B+C+D4.\overrightarrow{O} = \frac{\overrightarrow{P} + \overrightarrow{Q}}{2} = \frac{\left( \frac{\overrightarrow{A} + \overrightarrow{B}}{2} \right) + \left( \frac{\overrightarrow{C} + \overrightarrow{D}}{2} \right)}{2} = \frac{\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D}}{4}.

  2. Vector MO\overrightarrow{MO}: The vector MO\overrightarrow{MO} is expressed as: MO=OM=A+B+C+D4M.\overrightarrow{MO} = \overrightarrow{O} - \overrightarrow{M} = \frac{\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D}}{4} - \overrightarrow{M}.

  3. Sum of Vectors MA,MB,MC,MD\overrightarrow{MA}, \overrightarrow{MB}, \overrightarrow{MC}, \overrightarrow{MD}: For any point MM, the sum of the vectors MA,MB,MC,MD\overrightarrow{MA}, \overrightarrow{MB}, \overrightarrow{MC}, \overrightarrow{MD} is: MA+MB+MC+MD=(AM)+(BM)+(CM)+(DM).\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = (\overrightarrow{A} - \overrightarrow{M}) + (\overrightarrow{B} - \overrightarrow{M}) + (\overrightarrow{C} - \overrightarrow{M}) + (\overrightarrow{D} - \overrightarrow{M}). Simplifying this expression: =(A+B+C+D)4M.= (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D}) - 4\overrightarrow{M}.

  4. Final Step: From the earlier expression for MO\overrightarrow{MO}, we have: 4MO=4(A+B+C+D4M)=(A+B+C+D)4M.4 \overrightarrow{MO} = 4 \left( \frac{\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D}}{4} - \overrightarrow{M} \right) = (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D}) - 4\overrightarrow{M}. Therefore, we can conclude that: MA+MB+MC+MD=4MO.\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4 \overrightarrow{MO}.

Thus, the equation is proven.


Would you like more details on this proof, or clarification on any specific part?

Here are some related questions for deeper understanding:

  1. How are vectors used to describe midpoints in geometry?
  2. Can this method be applied to other polygons or shapes?
  3. What happens to the equation if the quadrilateral is not convex?
  4. How does this proof relate to the centroid of a polygon?
  5. What other properties of midpoints and centroids can be derived from vector analysis?

Tip: Using vector addition helps in simplifying complex geometric proofs, especially when dealing with centroids and midpoints.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Geometry
Midpoints
Quadrilaterals

Formulas

Vector midpoint formula: \overrightarrow{P} = \frac{\overrightarrow{A} + \overrightarrow{B}}{2}
Sum of vectors: \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}
Vector relations for centroids and midpoints

Theorems

Midpoint theorem in vector geometry
Properties of vector addition

Suitable Grade Level

High School (Grades 10-12)