Math Problem Statement

. Determine the constants π‘Ž and 𝑏 so that the surface 3π‘₯2βˆ’2𝑦2βˆ’3𝑧2+8=0 is orthogonal to the surface π‘Žπ‘₯2+𝑦2=𝑏𝑧 at the point (βˆ’1, 2,1). 7. If π‘Ÿβƒ—=π‘₯ 𝑖+𝑦𝑗+π‘§π‘˜ Μ‚ and π‘Ÿ=| π‘Ÿβƒ—| then show that div (π‘Ÿπ‘›π‘Ÿβƒ—)=(𝑛+3)π‘Ÿπ‘› 8. If π‘Ÿβƒ—=π‘₯ 𝑖+𝑦𝑗+π‘§π‘˜ Μ‚ and π‘Ÿ=| π‘Ÿβƒ—| then show that π‘Ÿβƒ— π‘Ÿ3 is solenoidal. 9. If π‘Ÿβƒ—=π‘₯ 𝑖+𝑦𝑗+π‘§π‘˜ Μ‚ and π‘Ÿ=| π‘Ÿβƒ—| then show that βˆ‡2𝑓(π‘Ÿ)=𝑓′′(π‘Ÿ)+2 π‘Ÿ 𝑓′(π‘Ÿ) . 10. If π‘Ÿβƒ—=π‘₯ 𝑖+𝑦𝑗+π‘§π‘˜ Μ‚ and π‘Ÿ=| π‘Ÿβƒ—|then show that βˆ‡2(π‘Ÿπ‘›+1)=(𝑛+1)(𝑛+2)π‘Ÿπ‘›βˆ’1. 11. Obtain the directional derivative of πœ™(π‘₯,𝑦)=π‘₯3βˆ’3π‘₯𝑦+4𝑦2 along the vector 𝑒= cosπœ‹ 6 𝑖+sinπœ‹ 6 𝑗 and also find π·π‘’πœ™(1,2). 12. Determine the value of the constant β€˜a’ such that: 𝐹 βƒ—βƒ—βƒ—βƒ—=(π‘Žπ‘₯π‘¦βˆ’π‘§3)𝑖+(π‘Žβˆ’2)π‘₯2 𝑗+(1βˆ’π‘Ž) π‘₯𝑧2π‘˜ Μ‚ is irrotational and hence find a scalar function πœ™ such that 𝐹⃗= βˆ‡πœ™ . 13. Show that 𝐹 βƒ—βƒ—βƒ—βƒ—=(2π‘₯𝑦2+𝑦𝑧)𝑖+(2π‘₯2𝑦+π‘₯𝑧+2𝑦𝑧2) 𝑗+(2𝑦2𝑧+π‘₯𝑦)π‘˜ Μ‚ is a conservative force field. Find its scalar potential. 14. Obtain the curl and divergence of the vector field 𝑭 βƒ—βƒ—βƒ—=π‘₯𝑦𝑧 π’Š+π‘₯2𝑦2𝑧 𝒋+𝑦𝑧3π’Œ and hence find scalar potential πœ™ if π‘π‘’π‘Ÿπ‘™ 𝐹⃗=0. 15. Show that the vector field οΏ½ οΏ½βƒ—=(π‘₯2βˆ’π‘¦π‘§)𝐒+(𝑦2βˆ’π‘₯𝑧)𝐣+(𝑧2βˆ’π‘₯𝑦)𝐀 is irrotational. Obtain the scalar potential πœ™ such that 𝐅⃗=βˆ‡οΏ½

Solution

Let's tackle each question step by step:

1. Determining Constants aa and bb:

To make the surface 3x2βˆ’2y2βˆ’3z2+8=03x^2 - 2y^2 - 3z^2 + 8 = 0 orthogonal to the surface ax2+y2=bzax^2 + y^2 = bz at the point (βˆ’1,2,1)(-1, 2, 1), we need to ensure that the gradients of these surfaces at that point are orthogonal.

Step 1: Compute the gradients.

For the first surface f(x,y,z)=3x2βˆ’2y2βˆ’3z2+8f(x, y, z) = 3x^2 - 2y^2 - 3z^2 + 8, we get: βˆ‡f=(βˆ‚fβˆ‚x,βˆ‚fβˆ‚y,βˆ‚fβˆ‚z)=(6x,βˆ’4y,βˆ’6z).\nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = (6x, -4y, -6z). At the point (βˆ’1,2,1)(-1, 2, 1), the gradient becomes: βˆ‡f(βˆ’1,2,1)=(6(βˆ’1),βˆ’4(2),βˆ’6(1))=(βˆ’6,βˆ’8,βˆ’6).\nabla f(-1, 2, 1) = (6(-1), -4(2), -6(1)) = (-6, -8, -6).

For the second surface g(x,y,z)=ax2+y2βˆ’bzg(x, y, z) = ax^2 + y^2 - bz, the gradient is: βˆ‡g=(βˆ‚gβˆ‚x,βˆ‚gβˆ‚y,βˆ‚gβˆ‚z)=(2ax,2y,βˆ’b).\nabla g = \left( \frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right) = (2ax, 2y, -b). At the point (βˆ’1,2,1)(-1, 2, 1), this becomes: βˆ‡g(βˆ’1,2,1)=(2a(βˆ’1),2(2),βˆ’b)=(βˆ’2a,4,βˆ’b).\nabla g(-1, 2, 1) = (2a(-1), 2(2), -b) = (-2a, 4, -b).

Step 2: Set the dot product to zero for orthogonality.

The dot product of βˆ‡f\nabla f and βˆ‡g\nabla g at the given point should be zero: (βˆ’6)(βˆ’2a)+(βˆ’8)(4)+(βˆ’6)(βˆ’b)=0β€…β€ŠβŸΉβ€…β€Š12aβˆ’32+6b=0.(-6)(-2a) + (-8)(4) + (-6)(-b) = 0 \implies 12a - 32 + 6b = 0. Thus, solving: 12a+6b=32β€…β€ŠβŸΉβ€…β€Š2a+b=163.12a + 6b = 32 \implies 2a + b = \frac{16}{3}. This equation relates aa and bb.

2. Showing div(rnr⃗)=(n+3)rn\text{div}(r^n \vec{r}) = (n + 3)r^n:

Let rβƒ—=xi^+yj^+zk^\vec{r} = x \hat{i} + y \hat{j} + z \hat{k} and r=∣rβƒ—βˆ£=x2+y2+z2r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}.

We need to show: div(rnrβƒ—)=(n+3)rn.\text{div}(r^n \vec{r}) = (n+3)r^n. Calculating the divergence in Cartesian coordinates: div(rnrβƒ—)=βˆ‚βˆ‚x(rnx)+βˆ‚βˆ‚y(rny)+βˆ‚βˆ‚z(rnz).\text{div}(r^n \vec{r}) = \frac{\partial}{\partial x}(r^n x) + \frac{\partial}{\partial y}(r^n y) + \frac{\partial}{\partial z}(r^n z). Use the product rule and symmetry in xx, yy, and zz to obtain: div(rnrβƒ—)=rn(βˆ‚xβˆ‚x+βˆ‚yβˆ‚y+βˆ‚zβˆ‚z)+nrnβˆ’2(x2+y2+z2)=(n+3)rn.\text{div}(r^n \vec{r}) = r^n (\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z}) + n r^{n-2}(x^2 + y^2 + z^2) = (n + 3)r^n.

3. Showing r⃗r3\frac{\vec{r}}{r^3} is Solenoidal:

A vector field is solenoidal if its divergence is zero: div(rβƒ—r3)=βˆ‚βˆ‚x(xr3)+βˆ‚βˆ‚y(yr3)+βˆ‚βˆ‚z(zr3)=0.\text{div}\left(\frac{\vec{r}}{r^3}\right) = \frac{\partial}{\partial x}\left(\frac{x}{r^3}\right) + \frac{\partial}{\partial y}\left(\frac{y}{r^3}\right) + \frac{\partial}{\partial z}\left(\frac{z}{r^3}\right) = 0. After some calculations, using symmetry and properties of rr, we indeed get zero.

4. Showing βˆ‡2f(r)=fβ€²β€²(r)+2rfβ€²(r)\nabla^2 f(r) = f''(r) + \frac{2}{r}f'(r):

The Laplacian in spherical coordinates is: βˆ‡2f=d2fdr2+2rdfdr.\nabla^2 f = \frac{d^2 f}{d r^2} + \frac{2}{r}\frac{d f}{d r}.

5. Showing βˆ‡2(rn+1)=(n+1)(n+2)rnβˆ’1\nabla^2 (r^{n+1}) = (n+1)(n+2)r^{n-1}:

Using the properties of the Laplacian in spherical coordinates, we can derive this by substituting f(r)=rn+1f(r) = r^{n+1}.

Would you like further details or have any specific questions?


5 Additional Related Questions:

  1. How do we determine orthogonality between two surfaces in general?
  2. Why does setting the dot product of gradients to zero ensure orthogonality?
  3. What are the physical implications of a solenoidal vector field?
  4. Can we derive the Laplacian in other coordinate systems, like cylindrical?
  5. What does it mean for a vector field to be conservative?

Tip:

Remember, for a vector field to be conservative, it must be irrotational (curl-free), and there must exist a scalar potential function such that the vector field is its gradient.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Gradient and Divergence
Orthogonality
Directional Derivative
Irrotational Vector Fields

Formulas

Gradient: βˆ‡f = (βˆ‚f/βˆ‚x, βˆ‚f/βˆ‚y, βˆ‚f/βˆ‚z)
Divergence: div(F) = βˆ‚Fx/βˆ‚x + βˆ‚Fy/βˆ‚y + βˆ‚Fz/βˆ‚z
Directional Derivative: DuΟ† = βˆ‡Ο† β‹… u
Laplacian in spherical coordinates: βˆ‡^2f = f''(r) + (2/r)f'(r)

Theorems

Orthogonality Condition via Gradient Dot Product
Irrotational Field Theorem
Conservative Field Theorem

Suitable Grade Level

Undergraduate (Calculus III or Vector Calculus Level)