Math Problem Statement

. Determine the constants π‘Ž and 𝑏 so that the surface 3π‘₯2βˆ’2𝑦2βˆ’3𝑧2+8=0 is orthogonal to the surface π‘Žπ‘₯2+𝑦2=𝑏𝑧 at the point (βˆ’1, 2,1). 7. If π‘Ÿβƒ—=π‘₯ 𝑖+𝑦𝑗+π‘§π‘˜ Μ‚ and π‘Ÿ=| π‘Ÿβƒ—| then show that div (π‘Ÿπ‘›π‘Ÿβƒ—)=(𝑛+3)π‘Ÿπ‘› 8. If π‘Ÿβƒ—=π‘₯ 𝑖+𝑦𝑗+π‘§π‘˜ Μ‚ and π‘Ÿ=| π‘Ÿβƒ—| then show that π‘Ÿβƒ— π‘Ÿ3 is solenoidal. 9. If π‘Ÿβƒ—=π‘₯ 𝑖+𝑦𝑗+π‘§π‘˜ Μ‚ and π‘Ÿ=| π‘Ÿβƒ—| then show that βˆ‡2𝑓(π‘Ÿ)=𝑓′′(π‘Ÿ)+2 π‘Ÿ 𝑓′(π‘Ÿ) . 10. If π‘Ÿβƒ—=π‘₯ 𝑖+𝑦𝑗+π‘§π‘˜ Μ‚ and π‘Ÿ=| π‘Ÿβƒ—|then show that βˆ‡2(π‘Ÿπ‘›+1)=(𝑛+1)(𝑛+2)π‘Ÿπ‘›βˆ’1. 11. Obtain the directional derivative of πœ™(π‘₯,𝑦)=π‘₯3βˆ’3π‘₯𝑦+4𝑦2 along the vector 𝑒= cosπœ‹ 6 𝑖+sinπœ‹ 6 𝑗 and also find π·π‘’πœ™(1,2). 12. Determine the value of the constant β€˜a’ such that: 𝐹 βƒ—βƒ—βƒ—βƒ—=(π‘Žπ‘₯π‘¦βˆ’π‘§3)𝑖+(π‘Žβˆ’2)π‘₯2 𝑗+(1βˆ’π‘Ž) π‘₯𝑧2π‘˜ Μ‚ is irrotational and hence find a scalar function πœ™ such that 𝐹⃗= βˆ‡πœ™ . 13. Show that 𝐹 βƒ—βƒ—βƒ—βƒ—=(2π‘₯𝑦2+𝑦𝑧)𝑖+(2π‘₯2𝑦+π‘₯𝑧+2𝑦𝑧2) 𝑗+(2𝑦2𝑧+π‘₯𝑦)π‘˜ Μ‚ is a conservative force field. Find its scalar potential. 14. Obtain the curl and divergence of the vector field 𝑭 βƒ—βƒ—βƒ—=π‘₯𝑦𝑧 π’Š+π‘₯2𝑦2𝑧 𝒋+𝑦𝑧3π’Œ and hence find scalar potential πœ™ if π‘π‘’π‘Ÿπ‘™ 𝐹⃗=0. 15. Show that the vector field οΏ½ οΏ½βƒ—=(π‘₯2βˆ’π‘¦π‘§)𝐒+(𝑦2βˆ’π‘₯𝑧)𝐣+(𝑧2βˆ’π‘₯𝑦)𝐀 is irrotational. Obtain the scalar potential πœ™ such that 𝐅⃗=βˆ‡οΏ½

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Gradient and Divergence
Orthogonality
Directional Derivative
Irrotational Vector Fields

Formulas

Gradient: βˆ‡f = (βˆ‚f/βˆ‚x, βˆ‚f/βˆ‚y, βˆ‚f/βˆ‚z)
Divergence: div(F) = βˆ‚Fx/βˆ‚x + βˆ‚Fy/βˆ‚y + βˆ‚Fz/βˆ‚z
Directional Derivative: DuΟ† = βˆ‡Ο† β‹… u
Laplacian in spherical coordinates: βˆ‡^2f = f''(r) + (2/r)f'(r)

Theorems

Orthogonality Condition via Gradient Dot Product
Irrotational Field Theorem
Conservative Field Theorem

Suitable Grade Level

Undergraduate (Calculus III or Vector Calculus Level)