Math Problem Statement

Figure 1 shows the quadrilateral OABC. Given \(\vec{OA} = \vec{a}\), \(\vec{OB} = \vec{b}\), and \(\vec{OC} = \vec{c}\), solve the following: (a) Find \(\vec{AB}\) in terms of \(\vec{a}\) and \(\vec{b}\). (b) Show that \(\vec{PQ} = \mu\vec{b}\), where \(\mu\) is a scalar, stating the value of \(\mu\). (c) Prove that \(\vec{PQ}\) is parallel to \(\vec{SR}\). (d) Given \(\vec{PQ} = \frac{3}{2}\vec{SR}\), find the value of \(\lambda\).

Solution

Let’s solve the questions step by step based on the given quadrilateral OABCOABC:


(a) Find AB\vec{AB} in terms of a\vec{a} and b\vec{b}

Using the vector addition and subtraction properties: AB=OBOA\vec{AB} = \vec{OB} - \vec{OA} Given OA=a\vec{OA} = \vec{a} and OB=b\vec{OB} = \vec{b}, we get: AB=ba\vec{AB} = \vec{b} - \vec{a}


(b) Show that PQ=μb\vec{PQ} = \mu\vec{b}, where μ\mu is a scalar, and find the value of μ\mu.

The midpoints PP and QQ are defined as follows:

  • PP is the midpoint of OA\vec{OA}, so: OP=OA2=a2\vec{OP} = \frac{\vec{OA}}{2} = \frac{\vec{a}}{2}
  • QQ is the midpoint of AB\vec{AB}, so: OQ=OP+AB2\vec{OQ} = \vec{OP} + \frac{\vec{AB}}{2} Substituting AB=ba\vec{AB} = \vec{b} - \vec{a} and OP=a2\vec{OP} = \frac{\vec{a}}{2}, we have: OQ=a2+ba2=a+ba2=b2\vec{OQ} = \frac{\vec{a}}{2} + \frac{\vec{b} - \vec{a}}{2} = \frac{\vec{a} + \vec{b} - \vec{a}}{2} = \frac{\vec{b}}{2} Thus, PQ=OQOP=b2a2\vec{PQ} = \vec{OQ} - \vec{OP} = \frac{\vec{b}}{2} - \frac{\vec{a}}{2}. Rearranging: PQ=b2\vec{PQ} = \frac{\vec{b}}{2} This implies that μ=12\mu = \frac{1}{2}.

(c) Show that PQ\vec{PQ} is parallel to SR\vec{SR}.

From the question:

  • OS=λOC=λc\vec{OS} = \lambda \vec{OC} = \lambda \vec{c},
  • BR=λBC\vec{BR} = \lambda \vec{BC}, and BC=cb\vec{BC} = \vec{c} - \vec{b}.

We can calculate SR\vec{SR} as: SR=OROS.\vec{SR} = \vec{OR} - \vec{OS}. Express OR\vec{OR} using BR=λBC\vec{BR} = \lambda \vec{BC}: OR=OB+λ(cb).\vec{OR} = \vec{OB} + \lambda (\vec{c} - \vec{b}). So: SR=(OB+λ(cb))λc.\vec{SR} = \left(\vec{OB} + \lambda (\vec{c} - \vec{b})\right) - \lambda \vec{c}. Simplify: SR=b+λcλbλc.\vec{SR} = \vec{b} + \lambda \vec{c} - \lambda \vec{b} - \lambda \vec{c}. This reduces to: SR=(1λ)b.\vec{SR} = (1 - \lambda) \vec{b}. Since PQ=12b\vec{PQ} = \frac{1}{2} \vec{b}, both vectors are scalar multiples of b\vec{b}, so PQSR\vec{PQ} \parallel \vec{SR}.


(d) Find the value of λ\lambda.

It is given that: PQ=32SR.\vec{PQ} = \frac{3}{2} \vec{SR}. Substitute: b2=32(1λ)b.\frac{\vec{b}}{2} = \frac{3}{2} (1 - \lambda) \vec{b}. Cancel b\vec{b} (non-zero vector) and simplify: 12=32(1λ).\frac{1}{2} = \frac{3}{2} (1 - \lambda). Multiply through by 2: 1=3(1λ).1 = 3(1 - \lambda). Distribute: 1=33λ.1 = 3 - 3\lambda. Solve for λ\lambda: 3λ=31λ=23.3\lambda = 3 - 1 \quad \Rightarrow \quad \lambda = \frac{2}{3}.


Final Answers:

(a) AB=ba\vec{AB} = \vec{b} - \vec{a}
(b) μ=12\mu = \frac{1}{2}
(c) PQSR\vec{PQ} \parallel \vec{SR}
(d) λ=23\lambda = \frac{2}{3}

Would you like detailed explanations for any part?

Here are five related questions to explore:

  1. What are the properties of parallel vectors in vector algebra?
  2. How do you find midpoints of line segments using vectors?
  3. What are scalar multiples, and how do they determine parallelism?
  4. How can vector projections help verify relationships like PQSR\vec{PQ} \parallel \vec{SR}?
  5. How does the choice of λ\lambda affect other geometric properties of the quadrilateral?

Tip: Always verify vector relationships using geometric intuition or diagrams to check your results!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector algebra
Midpoints
Parallel vectors
Scalar multiplication

Formulas

\(\vec{AB} = \vec{OB} - \vec{OA}\)
Midpoint formula \(\vec{OP} = \frac{\vec{OA}}{2}\)
Vector addition \(\vec{OQ} = \vec{OP} + \frac{\vec{AB}}{2}\)
Proportional vectors \(\vec{PQ} = k\vec{SR}\)

Theorems

Properties of parallel vectors
Midpoint theorem in vectors
Scalar multiple theorem

Suitable Grade Level

Grades 11-12 or early college level