Math Problem Statement

Δείξτε ότι ο εκτιμητής t είναι αμερόληπτος για τη διασπορά σ^2 και να υπολογιστεί η διασπορά του εκτιμητή t. Ο εκτιμητής ορίζεται ως: t = (1/N) * Σ (x[n] - μ)^2 για n = 0, 1, ..., N-1.

Solution

This is a statistical problem about proving that an estimator tt is unbiased for the population variance σ2\sigma^2 and calculating its variance. Let me guide you step by step.


Problem Restatement:

Given:

  • Independent measurements x[n]x[n] that follow a normal distribution N(μ,σ2)\mathcal{N}(\mu, \sigma^2), where n=0,1,,N1n = 0, 1, \ldots, N-1.
  • An estimator for variance is defined as: t=1Nn=0N1(x[n]μ)2t = \frac{1}{N} \sum_{n=0}^{N-1} \left( x[n] - \mu \right)^2

We are asked to:

  1. Prove that tt is an unbiased estimator of σ2\sigma^2.
  2. Calculate the variance of the estimator tt.

1. Proving Unbiasedness of tt:

The estimator tt is unbiased if: E[t]=σ2\mathbb{E}[t] = \sigma^2

Steps:

  1. Substitute the definition of tt: [ \mathbb{E}[t] = \mathbb{E}\left[\frac{1}{N} \sum_{n=0}^{N-1} \left( x[n] - \mu \right)^2 \right] ]

  2. Use the linearity of expectation: [ \mathbb{E}[t] = \frac{1}{N} \sum_{n=0}^{N-1} \mathbb{E}\left[ \left( x[n] - \mu \right)^2 \right] ]

  3. Recall the definition of variance: For x[n]N(μ,σ2)x[n] \sim \mathcal{N}(\mu, \sigma^2), [ \mathbb{E}\left[ (x[n] - \mu)^2 \right] = \text{Var}(x[n]) = \sigma^2 ]

  4. Substitute this result: E[t]=1Nn=0N1σ2\mathbb{E}[t] = \frac{1}{N} \sum_{n=0}^{N-1} \sigma^2

  5. Simplify the sum: E[t]=1NNσ2=σ2\mathbb{E}[t] = \frac{1}{N} \cdot N \cdot \sigma^2 = \sigma^2

Thus, E[t]=σ2\mathbb{E}[t] = \sigma^2, which proves that tt is an unbiased estimator of σ2\sigma^2.


2. Variance of the Estimator tt:

The variance of tt is defined as: [ \text{Var}(t) = \mathbb{E}[t^2] - (\mathbb{E}[t])^2 ]

Steps:

  1. Expand tt: t=1Nn=0N1(x[n]μ)2t = \frac{1}{N} \sum_{n=0}^{N-1} (x[n] - \mu)^2

    Denote yn=(x[n]μ)2y_n = (x[n] - \mu)^2. Then: t=1Nn=0N1ynt = \frac{1}{N} \sum_{n=0}^{N-1} y_n

  2. Recall the variance formula for the mean: If yny_n are independent and identically distributed random variables, then: Var(1Nn=0N1yn)=1N2n=0N1Var(yn)\text{Var}\left( \frac{1}{N} \sum_{n=0}^{N-1} y_n \right) = \frac{1}{N^2} \sum_{n=0}^{N-1} \text{Var}(y_n)

  3. Find Var(yn)\text{Var}(y_n): Since yn=(x[n]μ)2y_n = (x[n] - \mu)^2, use the properties of the normal distribution to calculate higher moments. Specifically, for x[n]N(μ,σ2)x[n] \sim \mathcal{N}(\mu, \sigma^2), it can be shown that: [ \mathbb{E}[y_n^2] = \mathbb{E}[(x[n] - \mu)^4] = 3\sigma^4 ] Thus: [ \text{Var}(y_n) = \mathbb{E}[y_n^2] - (\mathbb{E}[y_n])^2 = 3\sigma^4 - \sigma^4 = 2\sigma^4 ]

  4. Substitute back into the variance formula: Var(t)=1N2N2σ4=2σ4N\text{Var}(t) = \frac{1}{N^2} \cdot N \cdot 2\sigma^4 = \frac{2\sigma^4}{N}


Final Results:

  1. Unbiasedness: E[t]=σ2\mathbb{E}[t] = \sigma^2

  2. Variance of tt: Var(t)=2σ4N\text{Var}(t) = \frac{2\sigma^4}{N}


Do you want further clarifications or detailed derivations? Let me know! Here are some additional related questions:


Related Questions:

  1. What changes if μ\mu is unknown and replaced by the sample mean?
  2. How is tt related to the sample variance S2S^2?
  3. Can tt be considered a maximum likelihood estimator (MLE)?
  4. How would the results change for a non-normal distribution?
  5. What are the implications of NN \to \infty on the variance of tt?

Tip:

When working with estimators, always check both unbiasedness and variance to understand the trade-off between accuracy and variability.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Unbiased Estimators
Variance Calculation
Normal Distribution

Formulas

t = (1/N) * Σ (x[n] - μ)^2
E[t] = σ^2 (proof of unbiasedness)
Var(t) = E[t^2] - (E[t])^2

Theorems

Properties of the Variance
Linearity of Expectation
Moments of the Normal Distribution

Suitable Grade Level

University Level (Statistics Course)