Math Problem Statement

Q3. Find the degree and radian measure of the exterior angle of a regular pentagon. Q4. Evaluate 4cot45° - sec²60° + sin30°. Q5. Find the polar coordinates of the point whose Cartesian coordinates are (5,5). Q6. Solve 5^(2x+7) = 125. Q7. If A = {1, 2, 3} and B = {a, b}, then find A × B. Q8. If f(x) = x² + 2 and g(x) = 2x² - 5, then find (f + g)(x).

Solution

Here is the breakdown and solution for each of the questions:

Q3: Find the degree and radian measure of the exterior angle of a regular pentagon.

  • A regular polygon's exterior angle is given by: Exterior angle=360n\text{Exterior angle} = \frac{360^\circ}{n} For a pentagon, n=5n = 5: Exterior angle=3605=72\text{Exterior angle} = \frac{360^\circ}{5} = 72^\circ Now, converting to radians: Radians=72×π180=2π5 radians\text{Radians} = 72^\circ \times \frac{\pi}{180^\circ} = \frac{2\pi}{5} \text{ radians} Answer: 7272^\circ or 2π5\frac{2\pi}{5} radians.

Q4: Evaluate 4cot45sec260+sin304 \cot 45^\circ - \sec^2 60^\circ + \sin 30^\circ.

  • cot45=1\cot 45^\circ = 1,
  • sec60=2\sec 60^\circ = 2, so sec260=4\sec^2 60^\circ = 4,
  • sin30=12\sin 30^\circ = \frac{1}{2}.

Now substitute: 4cot45sec260+sin30=4(1)4+12=44+12=124 \cot 45^\circ - \sec^2 60^\circ + \sin 30^\circ = 4(1) - 4 + \frac{1}{2} = 4 - 4 + \frac{1}{2} = \frac{1}{2} Answer: 12\frac{1}{2}.


Q5: Find the polar coordinates of the point whose Cartesian coordinates are (5,5)(5, 5).

  • To convert from Cartesian to polar coordinates, we use the formulas: \quad \text{and} \quad \theta = \tan^{-1} \left(\frac{y}{x}\right)$$ Here, $$x = 5$$, $$y = 5$$: $$r = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2} \quad \text{and} \quad \theta = \tan^{-1} \left(\frac{5}{5}\right) = \tan^{-1}(1) = 45^\circ = \frac{\pi}{4} \text{ radians}$$ **Answer:** $$\left(5\sqrt{2}, \frac{\pi}{4}\right)$$.

Q6: Solve 52x+7=1255^{2x+7} = 125.

  • Express 125 as a power of 5: 125=53125 = 5^3.
  • Now, equate the exponents: 52x+7=535^{2x+7} = 5^3 This gives: 2x+7=32x + 7 = 3 Solving for xx: \quad \Rightarrow \quad x = -2$$ **Answer:** $$x = -2$$.

Q7: If A={1,2,3}A = \{1, 2, 3\} and B={a,b}B = \{a, b\}, find A×BA \times B.

  • The Cartesian product A×BA \times B consists of all ordered pairs where the first element is from set AA and the second element is from set BB. A×B={(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\} Answer: {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}\{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.

Q8: If f(x)=x2+2f(x) = x^2 + 2 and g(x)=2x25g(x) = 2x^2 - 5, then find (f+g)(x)(f + g)(x).

  • Add the two functions: (f+g)(x)=f(x)+g(x)(f + g)(x) = f(x) + g(x) Substituting: (f+g)(x)=(x2+2)+(2x25)=x2+2x2+25=3x23(f + g)(x) = (x^2 + 2) + (2x^2 - 5) = x^2 + 2x^2 + 2 - 5 = 3x^2 - 3 Answer: (f+g)(x)=3x23(f + g)(x) = 3x^2 - 3.

Let me know if you'd like more details or have any questions!

Follow-up Questions:

  1. How do you convert degrees to radians for any angle?
  2. What is the general formula for the exterior angle of any polygon?
  3. How do you find the Cartesian product of two sets?
  4. Can you express cot\cot, sec\sec, and sin\sin in terms of sine and cosine?
  5. What are the steps to solve exponential equations involving powers of the same base?

Tip:

When solving trigonometric problems, it's helpful to remember exact values for common angles (e.g., 30°, 45°, 60°).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Trigonometry
Polar Coordinates
Exponential Equations
Set Theory
Functions

Formulas

Exterior angle of regular polygon = 360°/n
cot(45°) = 1
sec(60°) = 2
sin(30°) = 1/2
r = √(x² + y²)
θ = tan⁻¹(y/x)
Exponential equation solving
Cartesian product of sets
Function addition

Theorems

Trigonometric identities
Polar coordinate conversion
Exponent rules
Set theory product
Basic function operations

Suitable Grade Level

Grades 10-12