Math Problem Statement
. 12. 13. ID: 2.2-44 Find all values of θ, if θ is in the interval [0,360°) and has the given function value. cos (θ) = 1 2 A. 150° and 210° B. 60° and 120° C. 210° and 330° D. 60° and 300° Answer: D. 60° and 300° ID: 2.3-19 Find a value of in [0 , 90 ] that satisfies the statement. Leave the answer in decimal degrees rounded to seven decimal places, if necessary. θ ° ° sec θ = 2.165 A. 24.7919207° B. 30.8660444° C. 62.4906237° D. 27.5093763° Answer: C. 62.4906237° ID: 2.4-11 Solve the right triangle. Round to three decimal places. a = 3.4 cm, b = 2.5 cm, C = 90° A. A = 53.673°, B = 36.327°, c = 4.220 cm B. A = 47.332°, B = 42.668°, c = 5.900 cm C. A = 49.173°, B = 40.827°, c = 4.220 cm D. A = 36.327°, B = 53.673°, c = 4.220 cm Answer: A. A = 53.673°, B = 36.327°, c = 4.220 cm T1 (DO NOT ASSIGN) https://xlitemprod.pearsoncmg.com/api/v1/print/highered 4 of 8 9/25/23, 9:04 AM cos(theta) = 1/2 > 0 => theta in Quadrant I or IV cos(60) = 1/2, so what angle in Quadrant IV has a reference angle of 60? For Quadrant IV, subtract reference angle from 360 => 300
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Right Triangle
Inverse Trigonometric Functions
Secant Function
Cosine Function
Formulas
cos(θ) = adjacent/hypotenuse
sec(θ) = 1/cos(θ)
Pythagorean theorem: c^2 = a^2 + b^2
tan(A) = opposite/adjacent
Theorems
Pythagorean Theorem
Trigonometric Functions and Their Inverses
Suitable Grade Level
Grades 10-12
Related Recommendation
Trigonometric Equation: Solve 1/sec(theta) + tan(theta) = sec(theta) - tan(theta)
Solving for θ when sec(θ) = 2.445: Inverse Trigonometry
Solve Trigonometric Equation with sin(60°) and cos²(30°)
Find cot(θ) and cos(θ) given sec(θ)=2 in a Right Triangle
Trigonometric Identity Verification Using Half-Angle Formulas