Math Problem Statement

can you give me another example of this practice problem: csc(-3pi/2)

Solution

Sure! Let's work through an example similar to csc(3π2)\csc(-\frac{3\pi}{2}) with a different angle. I'll use csc(π4)\csc(-\frac{\pi}{4}).

Example: Find csc(π4)\csc\left(-\frac{\pi}{4}\right).

Step 1: Recall the definition of cosecant.

csc(θ)=1sin(θ)\csc(\theta) = \frac{1}{\sin(\theta)} So, csc(π4)=1sin(π4)\csc\left(-\frac{\pi}{4}\right) = \frac{1}{\sin\left(-\frac{\pi}{4}\right)}.

Step 2: Find sin(π4)\sin\left(-\frac{\pi}{4}\right).

Using the fact that sine is an odd function: sin(θ)=sin(θ)\sin(-\theta) = -\sin(\theta) Thus, sin(π4)=sin(π4).\sin\left(-\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right). We know sin(π4)=22\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, so: sin(π4)=22.\sin\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}.

Step 3: Calculate csc(π4)\csc\left(-\frac{\pi}{4}\right).

csc(π4)=1sin(π4)=122=22=2.\csc\left(-\frac{\pi}{4}\right) = \frac{1}{\sin\left(-\frac{\pi}{4}\right)} = \frac{1}{-\frac{\sqrt{2}}{2}} = -\frac{2}{\sqrt{2}} = -\sqrt{2}.

Thus, csc(π4)=2\csc\left(-\frac{\pi}{4}\right) = -\sqrt{2}.


Would you like more details on any of these steps or another example?

Here are five related questions you could try:

  1. What is csc(π6)\csc(\frac{\pi}{6})?
  2. How does csc(θ)\csc(\theta) change when θ\theta is negative?
  3. Find csc(π3)\csc(\frac{\pi}{3}).
  4. Can you calculate csc(π)\csc(-\pi)?
  5. Why is csc(0)\csc(0) undefined?

Tip: Remember that sine and cosecant are reciprocal functions, so if sin(θ)\sin(\theta) is small, csc(θ)\csc(\theta) will be large!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Cosecant Function
Odd Functions

Formulas

csc(θ) = 1/sin(θ)
sin(-θ) = -sin(θ)

Theorems

Odd Function Property
Reciprocal Trigonometric Functions

Suitable Grade Level

Grades 10-12