Math Problem Statement
Solution
Let's break down the problem:
Problem:
Tallulah leans a 22-foot ladder against a wall. The ladder reaches 19.9 feet up the wall. We need to find the angle that the ladder forms with the ground, rounded to the nearest tenth of a degree.
Solution:
This problem involves a right triangle, where:
- The hypotenuse () is the length of the ladder, 22 feet.
- The opposite side () is the height the ladder reaches on the wall, 19.9 feet.
- The angle is the one formed between the ladder and the ground, and we need to find this angle.
Using trigonometry, specifically the sine function, we have:
Now, calculate :
To find , take the inverse sine () of 0.9045:
Using a calculator:
Answer:
The angle that the ladder forms with the ground is approximately 64.7 degrees.
Would you like more details or have any other questions? Here are some related questions for further practice:
- If the ladder were 25 feet long and still reached 19.9 feet up the wall, what angle would it form with the ground?
- What would be the horizontal distance from the base of the wall to the bottom of the ladder for this problem?
- How would the angle change if the ladder reached a higher point on the wall?
- Can you find the angle using cosine instead of sine in this case? Why or why not?
- What is the general formula for finding the angle in such ladder problems?
Tip: When solving trigonometric problems, always make sure your calculator is set to the correct mode (degrees or radians) based on what the problem asks for.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Right Triangle
Formulas
sin(θ) = opposite / hypotenuse
Theorems
Inverse Sine Function
Suitable Grade Level
Grades 9-11
Related Recommendation
Solve for the Angle of a Ladder Leaning Against a Wall
Find the Angle of a 16-Foot Ladder Leaning Against a Wall
Find the Angle Formed by a Ladder and the Ground Using Trigonometry
Find the Angle of a 20-Foot Ladder Leaning Against a Wall
Trigonometry Problem: Finding the Length of a Ladder Using the Sine Function