Math Problem Statement

Solve this the easiest or fastest way if their a trick use

Solve this the easiest or fastest way if their a trick use.

Solution

The integral given in the image is:

11+cos(2x)dx\int \frac{1}{1 + \cos(2x)} \, dx

To solve this, we can simplify the problem using a trigonometric identity and substitution.


Steps to Solve:

  1. Use the trigonometric identity for cos(2x)\cos(2x): cos(2x)=2cos2(x)1    1+cos(2x)=2cos2(x)\cos(2x) = 2\cos^2(x) - 1 \implies 1 + \cos(2x) = 2\cos^2(x) So the integral becomes: 11+cos(2x)dx=12cos2(x)dx=12sec2(x)dx\int \frac{1}{1 + \cos(2x)} \, dx = \int \frac{1}{2\cos^2(x)} \, dx = \frac{1}{2} \int \sec^2(x) \, dx

  2. Integrate sec2(x)\sec^2(x): The integral of sec2(x)\sec^2(x) is: sec2(x)dx=tan(x)\int \sec^2(x) \, dx = \tan(x)

  3. Combine the result: 12sec2(x)dx=12tan(x)+C\frac{1}{2} \int \sec^2(x) \, dx = \frac{1}{2} \tan(x) + C

Thus, the solution is: 12tan(x)+C\boxed{\frac{1}{2} \tan(x) + C}


Final Answer:

12tan(x)+C\frac{1}{2} \tan(x) + C

Let me know if you'd like me to elaborate further or if you have questions! Here are 5 related problems to deepen your understanding:

  1. Solve sec2(x)dx\int \sec^2(x) \, dx.
  2. Simplify and solve 11cos(2x)dx\int \frac{1}{1 - \cos(2x)} \, dx.
  3. Derive the identity cos(2x)=2cos2(x)1\cos(2x) = 2\cos^2(x) - 1 and use it in another integral.
  4. Solve 1sin2(x)dx\int \frac{1}{\sin^2(x)} \, dx.
  5. Explain why substitution wasn't required in this problem.

Tip: Memorize the common trigonometric integrals like sec2(x)dx=tan(x)\int \sec^2(x) \, dx = \tan(x) to solve problems faster!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Integration
Trigonometric Identities

Formulas

cos(2x) = 2cos^2(x) - 1
∫sec^2(x) dx = tan(x)

Theorems

Trigonometric Identity

Suitable Grade Level

Undergraduate Mathematics or Advanced High School (Grade 12)