Math Problem Statement

The point given below is on the terminal side of an angle theta .  Find the exact value of each of the six trigonometric functions of theta . left parenthesis negative 7 comma 24 right parenthesis

Solution

We are given the point (7,24)(-7, 24) on the terminal side of an angle θ\theta. To find the six trigonometric functions, we first determine the hypotenuse rr:

Step 1: Find rr

r=x2+y2r = \sqrt{x^2 + y^2} r=(7)2+242r = \sqrt{(-7)^2 + 24^2} r=49+576r = \sqrt{49 + 576} r=625=25r = \sqrt{625} = 25

Step 2: Compute the Six Trigonometric Functions

  1. Sine (sinθ\sin \theta): sinθ=yr=2425\sin \theta = \frac{y}{r} = \frac{24}{25}

  2. Cosine (cosθ\cos \theta): cosθ=xr=725\cos \theta = \frac{x}{r} = \frac{-7}{25}

  3. Tangent (tanθ\tan \theta): tanθ=yx=247=247\tan \theta = \frac{y}{x} = \frac{24}{-7} = -\frac{24}{7}

  4. Cosecant (cscθ\csc \theta) (Reciprocal of sine): cscθ=1sinθ=2524\csc \theta = \frac{1}{\sin \theta} = \frac{25}{24}

  5. Secant (secθ\sec \theta) (Reciprocal of cosine): secθ=1cosθ=257=257\sec \theta = \frac{1}{\cos \theta} = \frac{25}{-7} = -\frac{25}{7}

  6. Cotangent (cotθ\cot \theta) (Reciprocal of tangent): cotθ=1tanθ=724\cot \theta = \frac{1}{\tan \theta} = \frac{-7}{24}

Final Answer:

sinθ=2425,cosθ=725,tanθ=247\sin \theta = \frac{24}{25}, \quad \cos \theta = -\frac{7}{25}, \quad \tan \theta = -\frac{24}{7} cscθ=2524,secθ=257,cotθ=724\csc \theta = \frac{25}{24}, \quad \sec \theta = -\frac{25}{7}, \quad \cot \theta = -\frac{7}{24}

Would you like a more detailed explanation of any step?

Related Questions:

  1. How do you determine the quadrant of an angle given a point on its terminal side?
  2. What is the significance of the hypotenuse in trigonometry?
  3. How can you use trigonometric identities to verify these values?
  4. How do you find the reference angle for θ\theta given this point?
  5. What happens to these trigonometric functions if the point were in a different quadrant?

Tip: Remember that signs of trigonometric functions depend on the quadrant!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Cartesian Coordinates
Trigonometric Ratios
Quadrants and Signs of Trigonometric Functions

Formulas

r = √(x² + y²)
sin θ = y / r
cos θ = x / r
tan θ = y / x
csc θ = 1 / sin θ
sec θ = 1 / cos θ
cot θ = 1 / tan θ

Theorems

Pythagorean Theorem

Suitable Grade Level

Grades 9-11