Math Problem Statement

Suppose csc(A) = -13/5 where A terminates in QIV, and sec(B) = -2 where B terminates in QII. Determine sin(A), cos(A), tan(A), sin(B), cos(B), and tan(B).

Solution

To solve this problem, let’s calculate the requested trigonometric values step by step:

Given:

  1. csc(A)=135\csc(A) = \frac{-13}{5}, and AA is in Quadrant IV.
  2. sec(B)=2\sec(B) = -2, and BB is in Quadrant II.

1. Calculating for AA:

  • sin(A)\sin(A): Since csc(A)=1sin(A)\csc(A) = \frac{1}{\sin(A)}, sin(A)=1csc(A)=1135=513.\sin(A) = \frac{1}{\csc(A)} = \frac{1}{\frac{-13}{5}} = \frac{-5}{13}.

  • cos(A)\cos(A): Using the Pythagorean identity: sin2(A)+cos2(A)=1.\sin^2(A) + \cos^2(A) = 1. Substituting sin(A)=513\sin(A) = \frac{-5}{13}: (513)2+cos2(A)=1    25169+cos2(A)=1.\left(\frac{-5}{13}\right)^2 + \cos^2(A) = 1 \implies \frac{25}{169} + \cos^2(A) = 1. cos2(A)=125169=144169.\cos^2(A) = 1 - \frac{25}{169} = \frac{144}{169}. Taking the square root, and since AA is in Quadrant IV (cos>0\cos > 0): cos(A)=1213.\cos(A) = \frac{12}{13}.

  • tan(A)\tan(A): Using tan(A)=sin(A)cos(A)\tan(A) = \frac{\sin(A)}{\cos(A)}: tan(A)=5131213=512.\tan(A) = \frac{\frac{-5}{13}}{\frac{12}{13}} = \frac{-5}{12}.

2. Calculating for BB:

  • cos(B)\cos(B): Since sec(B)=1cos(B)\sec(B) = \frac{1}{\cos(B)}, cos(B)=1sec(B)=12=12.\cos(B) = \frac{1}{\sec(B)} = \frac{1}{-2} = -\frac{1}{2}.

  • sin(B)\sin(B): Using the Pythagorean identity: sin2(B)+cos2(B)=1.\sin^2(B) + \cos^2(B) = 1. Substituting cos(B)=12\cos(B) = -\frac{1}{2}: sin2(B)+(12)2=1    sin2(B)+14=1.\sin^2(B) + \left(-\frac{1}{2}\right)^2 = 1 \implies \sin^2(B) + \frac{1}{4} = 1. sin2(B)=114=34.\sin^2(B) = 1 - \frac{1}{4} = \frac{3}{4}. Taking the square root, and since BB is in Quadrant II (sin>0\sin > 0): sin(B)=32.\sin(B) = \frac{\sqrt{3}}{2}.

  • tan(B)\tan(B): Using tan(B)=sin(B)cos(B)\tan(B) = \frac{\sin(B)}{\cos(B)}: tan(B)=3212=3.\tan(B) = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = -\sqrt{3}.

Final Values:

  1. sin(A)=513\sin(A) = \frac{-5}{13}
  2. cos(A)=1213\cos(A) = \frac{12}{13}
  3. tan(A)=512\tan(A) = \frac{-5}{12}
  4. sin(B)=32\sin(B) = \frac{\sqrt{3}}{2}
  5. cos(B)=12\cos(B) = -\frac{1}{2}
  6. tan(B)=3\tan(B) = -\sqrt{3}

Let me know if you need clarifications or details for any step! Here are five relative questions to expand:

  1. How can trigonometric functions be determined for other quadrants?
  2. What is the significance of signs in different quadrants for trigonometric values?
  3. Can you explain how the Pythagorean identity works for any angle?
  4. How are reciprocal trigonometric functions (like csc,sec\csc, \sec) related to their primary counterparts?
  5. How can these trigonometric concepts be applied in real-world problems?

Tip: Always double-check the quadrant to assign the correct

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Functions
Quadrants of Angles
Pythagorean Identities

Formulas

csc(A) = 1/sin(A)
sec(B) = 1/cos(B)
sin^2(x) + cos^2(x) = 1
tan(x) = sin(x)/cos(x)

Theorems

Pythagorean Identity
Reciprocal Trigonometric Functions

Suitable Grade Level

Grades 10-12