Math Problem Statement

Find the values of the trigonometric functions of 𝜃 from the information given.

csc(𝜃) = 4,𝜃 in Quadrant I

Solution

To find the values of the trigonometric functions of θ\theta given that csc(θ)=4\csc(\theta) = 4 and θ\theta is in Quadrant I, let's go through each step carefully.

Step-by-Step Solution

  1. Understand the given information:

    • csc(θ)=4\csc(\theta) = 4
    • θ\theta is in Quadrant I.
  2. Recall the definition of cosecant (csc): csc(θ)=1sin(θ)\csc(\theta) = \frac{1}{\sin(\theta)}

    Given csc(θ)=4\csc(\theta) = 4, we can write: 1sin(θ)=4\frac{1}{\sin(\theta)} = 4

  3. Solve for sin(θ)\sin(\theta): sin(θ)=14\sin(\theta) = \frac{1}{4}

  4. Use the Pythagorean identity to find cos(θ)\cos(\theta): The Pythagorean identity states: sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1

    Substituting sin(θ)=14\sin(\theta) = \frac{1}{4}: (14)2+cos2(θ)=1\left( \frac{1}{4} \right)^2 + \cos^2(\theta) = 1 116+cos2(θ)=1\frac{1}{16} + \cos^2(\theta) = 1 cos2(θ)=1116\cos^2(\theta) = 1 - \frac{1}{16} cos2(θ)=1616116\cos^2(\theta) = \frac{16}{16} - \frac{1}{16} cos2(θ)=1516\cos^2(\theta) = \frac{15}{16}

  5. Solve for cos(θ)\cos(\theta): Since θ\theta is in Quadrant I, both sine and cosine are positive: cos(θ)=1516=154\cos(\theta) = \sqrt{\frac{15}{16}} = \frac{\sqrt{15}}{4}

  6. Find the other trigonometric functions:

    • Tangent (tan): tan(θ)=sin(θ)cos(θ)=14154=115=1515\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{1}{4}}{\frac{\sqrt{15}}{4}} = \frac{1}{\sqrt{15}} = \frac{\sqrt{15}}{15}

    • Cotangent (cot): cot(θ)=1tan(θ)=15\cot(\theta) = \frac{1}{\tan(\theta)} = \sqrt{15}

    • Secant (sec): sec(θ)=1cos(θ)=415=41515\sec(\theta) = \frac{1}{\cos(\theta)} = \frac{4}{\sqrt{15}} = \frac{4\sqrt{15}}{15}

Summary of Trigonometric Functions

  • sin(θ)=14\sin(\theta) = \frac{1}{4}
  • cos(θ)=154\cos(\theta) = \frac{\sqrt{15}}{4}
  • tan(θ)=1515\tan(\theta) = \frac{\sqrt{15}}{15}
  • csc(θ)=4\csc(\theta) = 4
  • sec(θ)=41515\sec(\theta) = \frac{4\sqrt{15}}{15}
  • cot(θ)=15\cot(\theta) = \sqrt{15}

Would you like more details on any of the steps, or do you have any questions?

Related Questions:

  1. What is the value of θ\theta if sin(θ)=14\sin(\theta) = \frac{1}{4} in Quadrant I?
  2. How do you find the trigonometric functions if given cos(θ)\cos(\theta) instead?
  3. What happens to the values of trigonometric functions in different quadrants?
  4. How can you verify the trigonometric identities using these values?
  5. What are the reciprocal identities of the trigonometric functions?

Tip: Remember that trigonometric functions have different signs depending on the quadrant in which the angle lies.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Functions
Quadrants

Formulas

csc(θ) = 1/sin(θ)
sin^2(θ) + cos^2(θ) = 1
tan(θ) = sin(θ)/cos(θ)
sec(θ) = 1/cos(θ)
cot(θ) = 1/tan(θ)

Theorems

Pythagorean Identity

Suitable Grade Level

Grades 9-12