Math Problem Statement

Given that sine of 41 = 0.6561, cosine of 41 = 0.7547, tangent of 41 = 0.8693, find the trigonometric function values for 319 degrees.

Solution

To find the trigonometric function values for 319319^\circ, we can use the periodicity of trigonometric functions. First, note that:

  • 319=36041319^\circ = 360^\circ - 41^\circ, so 319319^\circ is in the fourth quadrant.

In the fourth quadrant, the values of trigonometric functions behave as follows:

  • Sine (sin\sin) is negative.
  • Cosine (cos\cos) is positive.
  • Tangent (tan\tan) is negative.

Since 319=36041319^\circ = 360^\circ - 41^\circ, we use the following relationships:

  • sin(319)=sin(41)\sin(319^\circ) = -\sin(41^\circ)
  • cos(319)=cos(41)\cos(319^\circ) = \cos(41^\circ)
  • tan(319)=tan(41)\tan(319^\circ) = -\tan(41^\circ)

Given the values:

  • sin(41)=0.6561\sin(41^\circ) = 0.6561
  • cos(41)=0.7547\cos(41^\circ) = 0.7547
  • tan(41)=0.8693\tan(41^\circ) = 0.8693

We can now calculate the trigonometric values for 319319^\circ:

  1. sin(319)=0.6561\sin(319^\circ) = -0.6561
  2. cos(319)=0.7547\cos(319^\circ) = 0.7547
  3. tan(319)=0.8693\tan(319^\circ) = -0.8693

These are the values of the trigonometric functions for 319319^\circ.

Would you like further details on these functions or need additional clarification? Here are some related questions you might find interesting:

  1. What are the properties of trigonometric functions in different quadrants?
  2. How do we use reference angles to find trigonometric values?
  3. What is the significance of negative and positive values for trigonometric functions?
  4. Can we use a calculator to verify these values for any angle?
  5. How do we derive trigonometric values using the unit circle?

Tip: Understanding the unit circle is essential for quickly finding trigonometric function values for any angle!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Periodic Functions
Trigonometric Functions in Different Quadrants

Formulas

sin(360° - θ) = -sin(θ)
cos(360° - θ) = cos(θ)
tan(360° - θ) = -tan(θ)

Theorems

Periodic properties of trigonometric functions

Suitable Grade Level

Grades 9-11