Math Problem Statement

It can be shown that cos(4θ) = 1 - 8sin^2(θ)cos^2(θ). Hence, find the exact value of sin^2(π/24)cos^2(π/24).

Solution

Let's break this down step by step:

The given equation is:

cos4θ=18sin2θcos2θ\cos 4\theta = 1 - 8\sin^2 \theta \cos^2 \theta

You are tasked with finding the exact value of:

sin2(π24)cos2(π24)\sin^2 \left( \frac{\pi}{24} \right) \cos^2 \left( \frac{\pi}{24} \right)

Step 1: Simplify the product sin2(π24)cos2(π24)\sin^2 \left( \frac{\pi}{24} \right) \cos^2 \left( \frac{\pi}{24} \right)

We can use the identity:

sin2xcos2x=14sin2(2x)\sin^2 x \cos^2 x = \frac{1}{4} \sin^2 (2x)

So,

sin2(π24)cos2(π24)=14sin2(π12)\sin^2 \left( \frac{\pi}{24} \right) \cos^2 \left( \frac{\pi}{24} \right) = \frac{1}{4} \sin^2 \left( \frac{\pi}{12} \right)

Step 2: Evaluate sin2(π12)\sin^2 \left( \frac{\pi}{12} \right)

π12\frac{\pi}{12} is a common angle. Using exact trigonometric values, we know:

sin(π12)=sin15=624\sin \left( \frac{\pi}{12} \right) = \sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}

Now square it:

sin2(π12)=(624)2=6212+216=84316=234\sin^2 \left( \frac{\pi}{12} \right) = \left( \frac{\sqrt{6} - \sqrt{2}}{4} \right)^2 = \frac{6 - 2\sqrt{12} + 2}{16} = \frac{8 - 4\sqrt{3}}{16} = \frac{2 - \sqrt{3}}{4}

Step 3: Substitute this into the expression

Now substitute this into the equation:

sin2(π24)cos2(π24)=14×234=2316\sin^2 \left( \frac{\pi}{24} \right) \cos^2 \left( \frac{\pi}{24} \right) = \frac{1}{4} \times \frac{2 - \sqrt{3}}{4} = \frac{2 - \sqrt{3}}{16}

Thus, the exact value is:

2316\boxed{\frac{2 - \sqrt{3}}{16}}

Would you like further clarification on any of the steps? Here are some related questions for deeper understanding:

  1. How do trigonometric identities help in simplifying expressions?
  2. What are the exact values of sine and cosine for other common angles?
  3. How can you verify the exact values of trigonometric functions?
  4. Why is the double angle identity useful in this context?
  5. Can the identity sin2xcos2x=14sin2(2x)\sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) be applied to other problems?

Tip: Memorizing key trigonometric values like sin15\sin 15^\circ and cos15\cos 15^\circ can be very helpful for problems like this.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Exact Trigonometric Values

Formulas

cos(4θ) = 1 - 8sin^2(θ)cos^2(θ)
sin^2(x)cos^2(x) = 1/4 * sin^2(2x)

Theorems

Trigonometric Identity
Exact Values of Trigonometric Functions

Suitable Grade Level

Grades 10-12