Math Problem Statement

ω*Partial[u(40)s(44)r(44)θ(41),s]+ Partial[v(40)s(44)r(44)θ(41),r] + Divide[1,r]*Partial[w(40)s(44)r(44)θ(41),θ]+ Divide[v(40)s(44)r(44)θ(41),r] + κ(s)ω(v(s,r,θ)*Sin[θ]+ w(s,r,θ)*Cos[θ])=0,u=u'*Divide[U,Power[δ,Divide[1,2]]],v=v'*U,w=w'*U,κ(s)=Divide[δ(40)s(41),a]kindly do the substitution

Solution

Let's perform the substitutions step by step in the given expression. The substitutions that need to be applied are:

  1. u=uUδ1/2u = u' \cdot \frac{U}{\delta^{1/2}}
  2. v=vUv = v' \cdot U
  3. w=wUw = w' \cdot U
  4. κ(s)=δ(s)a\kappa(s) = \frac{\delta(s)}{a}

We will apply these substitutions to the original equation:

ωu(s,r,θ)s+v(s,r,θ)r+1rw(s,r,θ)θ+v(s,r,θ)r+κ(s)ω(v(s,r,θ)sin(θ)+w(s,r,θ)cos(θ))=0\omega \cdot \frac{\partial u(s,r,\theta)}{\partial s} + \frac{\partial v(s,r,\theta)}{\partial r} + \frac{1}{r} \cdot \frac{\partial w(s,r,\theta)}{\partial \theta} + \frac{v(s,r,\theta)}{r} + \kappa(s) \cdot \omega \cdot (v(s,r,\theta) \cdot \sin(\theta) + w(s,r,\theta) \cdot \cos(\theta)) = 0

Now, let's substitute:

  1. Substitute for u(s,r,θ)u(s, r, \theta): u(s,r,θ)=u(s,r,θ)Uδ1/2u(s,r,\theta) = u'(s,r,\theta) \cdot \frac{U}{\delta^{1/2}}

    So, u(s,r,θ)s=s(u(s,r,θ)Uδ1/2)\frac{\partial u(s,r,\theta)}{\partial s} = \frac{\partial}{\partial s} \left( u'(s,r,\theta) \cdot \frac{U}{\delta^{1/2}} \right) Using the product rule: u(s,r,θ)s=Uδ1/2u(s,r,θ)s+u(s,r,θ)s(Uδ1/2)\frac{\partial u(s,r,\theta)}{\partial s} = \frac{U}{\delta^{1/2}} \cdot \frac{\partial u'(s,r,\theta)}{\partial s} + u'(s,r,\theta) \cdot \frac{\partial}{\partial s} \left( \frac{U}{\delta^{1/2}} \right)

  2. Substitute for v(s,r,θ)v(s, r, \theta): v(s,r,θ)=v(s,r,θ)Uv(s,r,\theta) = v'(s,r,\theta) \cdot U

    So, v(s,r,θ)r=Uv(s,r,θ)r\frac{\partial v(s,r,\theta)}{\partial r} = U \cdot \frac{\partial v'(s,r,\theta)}{\partial r}

  3. Substitute for w(s,r,θ)w(s, r, \theta): w(s,r,θ)=w(s,r,θ)Uw(s,r,\theta) = w'(s,r,\theta) \cdot U

    So, w(s,r,θ)θ=Uw(s,r,θ)θ\frac{\partial w(s,r,\theta)}{\partial \theta} = U \cdot \frac{\partial w'(s,r,\theta)}{\partial \theta}

  4. Substitute for κ(s)\kappa(s): κ(s)=δ(s)a\kappa(s) = \frac{\delta(s)}{a}

Finally, substitute these into the original equation:

ω(Uδ1/2u(s,r,θ)s+u(s,r,θ)s(Uδ1/2))+Uv(s,r,θ)r+1rUw(s,r,θ)θ+Uv(s,r,θ)r\omega \cdot \left( \frac{U}{\delta^{1/2}} \cdot \frac{\partial u'(s,r,\theta)}{\partial s} + u'(s,r,\theta) \cdot \frac{\partial}{\partial s} \left( \frac{U}{\delta^{1/2}} \right) \right) + U \cdot \frac{\partial v'(s,r,\theta)}{\partial r} + \frac{1}{r} \cdot U \cdot \frac{\partial w'(s,r,\theta)}{\partial \theta} + \frac{U \cdot v'(s,r,\theta)}{r} +δ(s)aω(Uv(s,r,θ)sin(θ)+Uw(s,r,θ)cos(θ))=0+ \frac{\delta(s)}{a} \cdot \omega \cdot \left( U \cdot v'(s,r,\theta) \cdot \sin(\theta) + U \cdot w'(s,r,\theta) \cdot \cos(\theta) \right) = 0

We can factor out the common terms of UU:

U \cdot \left[ \omega \cdot \left( \frac{1}{\delta^{1/2}} \cdot \frac{\partial u'(s,r,\theta)}{\partial s} + u'(s,r,\theta) \cdot \frac{\partial}{\partial s} \left( \frac{1}{\delta^{1/2}} \right) \right) + \frac{\partial v'(s,r,\theta)}{\partial r} + \frac{1}{r} \cdot \frac{\partial w'(s,r,\theta)}{\partial \theta} + \frac{v'(s,r,\theta)}{r} + \frac{\delta(s)}{a} \cdot \omega \cdot \left( v'(s,r,\theta) \cdot \sin(\theta) + w'(s,r,\theta) \cdot \cos(\theta) \right) \right] = 0

This is the final expression after the substitution.

Would you like further details or a breakdown of specific parts?

Here are some follow-up questions you might explore:

  1. How would the equation change if ω\omega were not constant?
  2. What happens to the equation in the case where δ(s)\delta(s) is constant?
  3. How does the presence of δ(s)a\frac{\delta(s)}{a} affect the physical interpretation of the problem?
  4. Can this equation be simplified further under any specific conditions?
  5. What role does each variable (such as ω\omega, UU, and aa) play in the overall system?

Tip: When substituting variables, keep track of dimensionless quantities. It helps in checking the consistency of units in complex systems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Partial Differential Equations
Substitution in Equations
Trigonometric Functions
Physics-based Mathematical Modeling

Formulas

u(s,r,θ) = u'(s,r,θ) * U/δ^(1/2)
v(s,r,θ) = v'(s,r,θ) * U
w(s,r,θ) = w'(s,r,θ) * U
κ(s) = δ(s)/a

Theorems

-

Suitable Grade Level

Undergraduate/Graduate Level in Mathematics or Physics