Math Problem Statement

Укажите все верные утверждения из предложенного списка: 1. В группе S4 есть подгруппа H порядка 5. 2. Индекс подгруппы An в группе Sn равен 2. 3. Центр группы всегда конечен. 4. Группы Z3 × Z10 и Z15 × Z2 изоморфны.

Solution

Here is the analysis of the statements in the image:

  1. "В группе S4S_4 есть подгруппа HH порядка 5."
    The group S4S_4 (symmetric group of degree 4) has order 4!=244! = 24. A subgroup of order 5 would require that 5 divides 24, which is not true.
    This statement is false.

  2. "Индекс подгруппы AnA_n в группе SnS_n равен 2."
    The alternating group AnA_n consists of all even permutations of SnS_n, and its order is An=Sn2|A_n| = \frac{|S_n|}{2}. Therefore, the index of AnA_n in SnS_n is indeed 2.
    This statement is true.

  3. "Центр группы всегда конечен."
    The center of a group (set of elements commuting with all other elements) is not always finite. For example, the center of an infinite group like Rn\mathbb{R}^n (under addition) is infinite.
    This statement is false.

  4. "Группы Z3×Z10\mathbb{Z}_3 \times \mathbb{Z}_{10} и Z15×Z2\mathbb{Z}_{15} \times \mathbb{Z}_2 изоморфны."
    To check isomorphism, we analyze their structures:

    • Z3×Z10\mathbb{Z}_3 \times \mathbb{Z}_{10}: Use the Chinese Remainder Theorem. Since gcd(3,10)=1\text{gcd}(3, 10) = 1, this is isomorphic to Z30\mathbb{Z}_{30}.
    • Z15×Z2\mathbb{Z}_{15} \times \mathbb{Z}_2: Similarly, since gcd(15,2)=1\text{gcd}(15, 2) = 1, this is also isomorphic to Z30\mathbb{Z}_{30}.
      Thus, the two groups are isomorphic.
      This statement is true.

Final Answers:

  • True statements:
    • "Индекс подгруппы AnA_n в группе SnS_n равен 2."
    • "Группы Z3×Z10\mathbb{Z}_3 \times \mathbb{Z}_{10} и Z15×Z2\mathbb{Z}_{15} \times \mathbb{Z}_2 изоморфны."

Let me know if you'd like a deeper explanation of any part!

Related Questions:

  1. How is the order of a subgroup determined in a symmetric group?
  2. Can we generalize the index of AnA_n in SnS_n to higher nn?
  3. What examples exist of infinite groups with infinite centers?
  4. How does the Chinese Remainder Theorem help in determining group isomorphism?
  5. Why can't a group of order 24 have a subgroup of order 5?

Tip:

When analyzing group structures, always verify divisibility rules and the order of elements to rule out false subgroup claims.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Group Theory
Symmetric Groups
Subgroups
Group Isomorphism

Formulas

Order of Symmetric Group: |Sn| = n!
Chinese Remainder Theorem

Theorems

Lagrange's Theorem
Chinese Remainder Theorem

Suitable Grade Level

Undergraduate