Math Problem Statement

Evaluate the following limits: (a) lim(x→2) (x^5 - 32)/(x - 2), (b) lim(x→a) [(1/x^3) - (1/a^3)] / [(1/x) - (1/a)], (c) lim(x→64) (√[6]{x} - 2)/(√[3]{x} - 4), (d) lim(x→4) (x^3 - 64)/(x^2 - 16), (e) lim(x→b) (x^(5/2) - b^(5/2))/(x - b).

Solution

Thanks for sharing the image! I'll solve the provided limits step by step. Let's work through each problem:


3(a)

limx2x532x2\lim_{x \to 2} \frac{x^5 - 32}{x - 2}
Solution:
The numerator x532x^5 - 32 can be factored using the difference of powers formula:
x532=(x2)(x4+2x3+4x2+8x+16).x^5 - 32 = (x - 2)(x^4 + 2x^3 + 4x^2 + 8x + 16).
Substituting this into the fraction:
x532x2=x4+2x3+4x2+8x+16for x2.\frac{x^5 - 32}{x - 2} = x^4 + 2x^3 + 4x^2 + 8x + 16 \quad \text{for } x \neq 2.
Now, directly substitute x=2x = 2:
limx2x532x2=24+2(23)+4(22)+8(2)+16=16+16+16+16+16=80.\lim_{x \to 2} \frac{x^5 - 32}{x - 2} = 2^4 + 2(2^3) + 4(2^2) + 8(2) + 16 = 16 + 16 + 16 + 16 + 16 = 80.

Answer: 8080


3(b)

limxa1x31a31x1a\lim_{x \to a} \frac{\frac{1}{x^3} - \frac{1}{a^3}}{\frac{1}{x} - \frac{1}{a}}
Solution:
Simplify the fractions:
1x31a31x1a=a3x3x3a3axax.\frac{\frac{1}{x^3} - \frac{1}{a^3}}{\frac{1}{x} - \frac{1}{a}} = \frac{\frac{a^3 - x^3}{x^3 a^3}}{\frac{a - x}{ax}}.
Simplify further:
=a3x3x3a3axax.= \frac{a^3 - x^3}{x^3 a^3} \cdot \frac{ax}{a - x}.
Notice a3x3=(ax)(a2+ax+x2)a^3 - x^3 = (a - x)(a^2 + ax + x^2). Substituting this:
=(ax)(a2+ax+x2)x3a3axax.= \frac{(a - x)(a^2 + ax + x^2)}{x^3 a^3} \cdot \frac{ax}{a - x}.
Cancel out axa - x:
=a2+ax+x2x3a3ax.= \frac{a^2 + ax + x^2}{x^3 a^3} \cdot ax.
Substitute x=ax = a:
=a2+a2+a2a3a3a=3a2a6a=3a3.= \frac{a^2 + a^2 + a^2}{a^3 a^3} \cdot a = \frac{3a^2}{a^6} \cdot a = \frac{3}{a^3}.

Answer: 3a3\frac{3}{a^3}


3(c)

[ \lim_{x \to 64} \frac{\sqrt[6]{x} - 2}{\sqrt[3]{x} - 4} ]
Solution:
Let x=t6x = t^6, so x6=t\sqrt[6]{x} = t and x3=t2\sqrt[3]{x} = t^2. Substituting these:
[ \frac{\sqrt[6]{x} - 2}{\sqrt[3]{x} - 4} = \frac{t - 2}{t^2 - 4}. ]
Factor t24=(t2)(t+2)t^2 - 4 = (t - 2)(t + 2):
=1t+2for t2.= \frac{1}{t + 2} \quad \text{for } t \neq 2.
Substitute t=2t = 2:
[ \lim_{x \to 64} \frac{\sqrt[6]{x} - 2}{\sqrt[3]{x} - 4} = \frac{1}{2 + 2} = \frac{1}{4}. ]

Answer: 14\frac{1}{4}


3(d)

limx4x364x216\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}
Solution:
Factor both numerator and denominator:
x364=(x4)(x2+4x+16),x216=(x4)(x+4).x^3 - 64 = (x - 4)(x^2 + 4x + 16), \quad x^2 - 16 = (x - 4)(x + 4).
Simplify:
x364x216=x2+4x+16x+4for x4.\frac{x^3 - 64}{x^2 - 16} = \frac{x^2 + 4x + 16}{x + 4} \quad \text{for } x \neq 4.
Substitute x=4x = 4:
limx4x364x216=42+4(4)+164+4=16+16+168=488=6.\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16} = \frac{4^2 + 4(4) + 16}{4 + 4} = \frac{16 + 16 + 16}{8} = \frac{48}{8} = 6.

Answer: 66


3(e)

limxbx5/2b5/2xb\lim_{x \to b} \frac{x^{5/2} - b^{5/2}}{x - b}
Solution:
This is a derivative in disguise! Using the definition of the derivative:
limxbx5/2b5/2xb=ddx(x5/2)x=b.\lim_{x \to b} \frac{x^{5/2} - b^{5/2}}{x - b} = \frac{d}{dx} \left( x^{5/2} \right) \Big|_{x = b}.
Differentiate x5/2x^{5/2}:
ddxx5/2=52x3/2.\frac{d}{dx} x^{5/2} = \frac{5}{2}x^{3/2}.
Substitute x=bx = b:
limxbx5/2b5/2xb=52b3/2.\lim_{x \to b} \frac{x^{5/2} - b^{5/2}}{x - b} = \frac{5}{2}b^{3/2}.

Answer: 52b3/2\frac{5}{2}b^{3/2}


Let me know if you need further explanations for any part!

Related Questions:

  1. What happens if the denominator approaches zero but the numerator doesn't?
  2. How can L'Hôpital's Rule be applied to limits involving indeterminate forms?
  3. Why does factoring simplify many limit problems?
  4. How can limits define the derivative of a function?
  5. What are other common forms where direct substitution fails in limits?

Tip: Always try direct substitution first; if it results in an indeterminate form, explore simplifications or apply advanced methods like factoring or L'Hôpital's Rule.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Factoring
Difference of Powers
Simplification
Derivative Definition

Formulas

Difference of nth powers: a^n - b^n = (a - b)(a^(n-1) + a^(n-2)b + ... + b^(n-1))
Derivative definition: lim(x→a) [f(x) - f(a)] / (x - a)

Theorems

Factorization Theorem
Properties of Exponents
Basic Limit Rules
Definition of the Derivative

Suitable Grade Level

Grades 11-12