Math Problem Statement

Solve the problems involving square roots, exponents, and arithmetic operations provided in the image.

Solution

Here is the breakdown of the problems from the image. I will solve them one by one. Let me know where you'd like detailed explanations.


Solutions

10. 519(53)6\frac{5^{-19}}{(5^3)^{-6}}

Simplify the denominator:
(53)6=518.(5^3)^{-6} = 5^{-18}.
Thus:
519518=519(18)=51=15.\frac{5^{-19}}{5^{-18}} = 5^{-19 - (-18)} = 5^{-1} = \frac{1}{5}.


11. 1282\sqrt{128} \cdot \sqrt{2}

Combine under a single square root:
1282=256=16.\sqrt{128 \cdot 2} = \sqrt{256} = 16.


12. 29.460\sqrt{29.4} \cdot \sqrt{60}

Combine under one square root:
29.460=1764.\sqrt{29.4 \cdot 60} = \sqrt{1764}.
Simplify:
1764=42.\sqrt{1764} = 42.


13. 1757\frac{\sqrt{175}}{\sqrt{7}}

Simplify using division inside the square root:
1757=1757=25=5.\frac{\sqrt{175}}{\sqrt{7}} = \sqrt{\frac{175}{7}} = \sqrt{25} = 5.


14. 81083\frac{8\sqrt{108}}{\sqrt{3}}

Simplify the square root:
1083=1083=36=6.\frac{\sqrt{108}}{\sqrt{3}} = \sqrt{\frac{108}{3}} = \sqrt{36} = 6.
Multiply:
86=48.8 \cdot 6 = 48.


15. 14743\frac{\sqrt{147}}{4\sqrt{3}}

Simplify the numerator:
147=493=73.\sqrt{147} = \sqrt{49 \cdot 3} = 7\sqrt{3}.
Thus:
14743=7343=74.\frac{\sqrt{147}}{4\sqrt{3}} = \frac{7\sqrt{3}}{4\sqrt{3}} = \frac{7}{4}.


16. (911)218\frac{(9\sqrt{11})^2}{18}

Square the numerator:
(911)2=8111=891.(9\sqrt{11})^2 = 81 \cdot 11 = 891.
Divide:
89118=49.\frac{891}{18} = 49.


17. 3692\sqrt{36} \cdot 92

Simplify the square root:
36=6.\sqrt{36} = 6.
Multiply:
692=552.6 \cdot 92 = 552.


18. 23546\frac{2}{3} \sqrt{54} \cdot \sqrt{6}

Combine the square roots:
546=546=324=18.\sqrt{54} \cdot \sqrt{6} = \sqrt{54 \cdot 6} = \sqrt{324} = 18.
Multiply:
2318=12.\frac{2}{3} \cdot 18 = 12.


19. (1417)(14+17)(\sqrt{14} - \sqrt{17})(\sqrt{14} + \sqrt{17})

This is a difference of squares:
a2b2=(14)2(17)2=1417=3.a^2 - b^2 = (\sqrt{14})^2 - (\sqrt{17})^2 = 14 - 17 = -3.


20. (50+128)22(\sqrt{50} + \sqrt{128}) \cdot 2\sqrt{2}

Simplify each square root:
50=52,128=82.\sqrt{50} = 5\sqrt{2}, \quad \sqrt{128} = 8\sqrt{2}.
Add:
50+128=52+82=132.\sqrt{50} + \sqrt{128} = 5\sqrt{2} + 8\sqrt{2} = 13\sqrt{2}.
Multiply by 222\sqrt{2}:
13222=1322=52.13\sqrt{2} \cdot 2\sqrt{2} = 13 \cdot 2 \cdot 2 = 52.


Final Answers

  1. 15\frac{1}{5}
  2. 1616
  3. 4242
  4. 55
  5. 4848
  6. 74\frac{7}{4}
  7. 4949
  8. 552552
  9. 1212
  10. 3-3
  11. 5252

Let me know if you'd like detailed steps for any specific problem!

Related Questions:

  1. How do you simplify square roots with multiplication or division?
  2. What is the rule for simplifying exponents in fractions?
  3. How can you identify and solve a difference of squares?
  4. How do you simplify complex square root expressions?
  5. How do you handle rationalizing denominators with square roots?

Tip: Always combine square roots into one expression before simplifying. This reduces errors and makes calculations easier!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Square Roots
Exponents
Simplification of Radicals
Basic Arithmetic Operations
Properties of Exponents

Formulas

√a * √b = √(a * b)
a^m / a^n = a^(m-n)
(a - b)(a + b) = a^2 - b^2

Theorems

Exponent Rules
Difference of Squares
Properties of Square Roots

Suitable Grade Level

Grades 8-10