Math Problem Statement

cos(x)-cos(y)=a; sin(x)-sin(y)=b; tìm x,y

Solution

To solve the system of trigonometric equations:

cos(x)cos(y)=a(1)\cos(x) - \cos(y) = a \quad \text{(1)} sin(x)sin(y)=b(2)\sin(x) - \sin(y) = b \quad \text{(2)}

we can use trigonometric identities and manipulation.

Step 1: Use sum-to-product identities

We know the following sum-to-product identities:

cos(A)cos(B)=2sin(A+B2)sin(AB2)\cos(A) - \cos(B) = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) sin(A)sin(B)=2cos(A+B2)sin(AB2)\sin(A) - \sin(B) = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)

Step 2: Apply these identities to the given equations

For equation (1): cos(x)cos(y)=2sin(x+y2)sin(xy2)=a\cos(x) - \cos(y) = -2 \sin\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) = a For equation (2): sin(x)sin(y)=2cos(x+y2)sin(xy2)=b\sin(x) - \sin(y) = 2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) = b

Now we have the system: 2sin(x+y2)sin(xy2)=a-2 \sin\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) = a 2cos(x+y2)sin(xy2)=b2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) = b

Step 3: Solve for sin(xy2)\sin\left(\frac{x-y}{2}\right)

Divide the two equations: 2sin(x+y2)sin(xy2)2cos(x+y2)sin(xy2)=ab\frac{-2 \sin\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right)}{2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right)} = \frac{a}{b} Simplifying: sin(x+y2)cos(x+y2)=ab\frac{- \sin\left(\frac{x+y}{2}\right)}{\cos\left(\frac{x+y}{2}\right)} = \frac{a}{b} This gives: tan(x+y2)=ab- \tan\left(\frac{x+y}{2}\right) = \frac{a}{b} So: tan(x+y2)=ab\tan\left(\frac{x+y}{2}\right) = -\frac{a}{b}

Step 4: Solve for x+y2\frac{x+y}{2}

Thus: x+y2=tan1(ab)\frac{x+y}{2} = \tan^{-1}\left(-\frac{a}{b}\right) So: x+y=2tan1(ab)x + y = 2 \tan^{-1}\left(-\frac{a}{b}\right)

Step 5: Solve for sin(xy2)\sin\left(\frac{x-y}{2}\right)

Substitute tan(x+y2)\tan\left(\frac{x+y}{2}\right) back into one of the original equations (for simplicity, the second one): 2cos(x+y2)sin(xy2)=b2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) = b Since we know x+y2\frac{x+y}{2}, we can solve for sin(xy2)\sin\left(\frac{x-y}{2}\right).

Finally, after solving sin(xy2)\sin\left(\frac{x-y}{2}\right) and x+y2\frac{x+y}{2}, we can find both xx and yy by solving the system: x=x+y2+xy2x = \frac{x+y}{2} + \frac{x-y}{2} y=x+y2xy2y = \frac{x+y}{2} - \frac{x-y}{2}

Would you like me to continue with detailed calculations or clarifications?

Further Questions:

  1. What are the possible solutions for xx and yy in different quadrants?
  2. How do we handle cases where tan1(a/b)\tan^{-1}(-a/b) gives multiple solutions?
  3. Can these equations have a geometric interpretation on the unit circle?
  4. How do the signs of aa and bb affect the solutions?
  5. What happens if a=0a = 0 or b=0b = 0?

Tip: When working with trigonometric identities, sum-to-product formulas are often useful in simplifying differences between functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
System of Equations
Sum-to-Product Identities

Formulas

cos(A) - cos(B) = -2 sin((A+B)/2) sin((A-B)/2)
sin(A) - sin(B) = 2 cos((A+B)/2) sin((A-B)/2)
tan((x+y)/2) = -a/b
x + y = 2 tan^(-1)(-a/b)

Theorems

Sum-to-Product Identities
Inverse Trigonometric Functions

Suitable Grade Level

Grades 11-12, College