Math Problem Statement

Решите уравнения: a) cos x = -√2/2; b) sin(x/2 - π/4) = 0; c) cos 3x = √3/2; Найдите значения других трёх тригонометрических функций, если sin α = -12/13, 3π/2 < α < 2π, и cos α = -0.8, π/2 < α < π.

Solution

Let's solve the problems step by step.


1. Решите уравнения:

a) cosx=22\cos x = -\frac{\sqrt{2}}{2}

The cosine function equals 22-\frac{\sqrt{2}}{2} at the following points: x=ππ4+2nπandx=π+π4+2nπx = \pi - \frac{\pi}{4} + 2n\pi \quad \text{and} \quad x = \pi + \frac{\pi}{4} + 2n\pi Simplifying: x=3π4+2nπandx=5π4+2nπ,  nZ.x = \frac{3\pi}{4} + 2n\pi \quad \text{and} \quad x = \frac{5\pi}{4} + 2n\pi, \; n \in \mathbb{Z}.


b) sin(x2π4)=0\sin\left(\frac{x}{2} - \frac{\pi}{4}\right) = 0

The sine function equals 0 at: x2π4=nπ,  nZ.\frac{x}{2} - \frac{\pi}{4} = n\pi, \; n \in \mathbb{Z}. Solving for xx: x=2nπ+π2.x = 2n\pi + \frac{\pi}{2}.


c) cos(3x)=32\cos(3x) = \frac{\sqrt{3}}{2}

The cosine function equals 32\frac{\sqrt{3}}{2} at: 3x=2nπ±π6,  nZ.3x = 2n\pi \pm \frac{\pi}{6}, \; n \in \mathbb{Z}. Solving for xx: x=2nπ3±π18.x = \frac{2n\pi}{3} \pm \frac{\pi}{18}.


2. Найдите значения других трех основных тригонометрических функций:

Given sinα=1213\sin\alpha = -\frac{12}{13} and 3π2<α<2π\frac{3\pi}{2} < \alpha < 2\pi:

  1. Compute cosα\cos\alpha using sin2α+cos2α=1\sin^2\alpha + \cos^2\alpha = 1: cos2α=1sin2α=1(1213)2=1144169=25169.\cos^2\alpha = 1 - \sin^2\alpha = 1 - \left(-\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169}. \cos\alpha = -\frac{5}{13}, \quad \text{(negative because \alpha is in the 4th quadrant)}.

  2. Compute tanα\tan\alpha: tanα=sinαcosα=1213513=125.\tan\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{-\frac{12}{13}}{-\frac{5}{13}} = \frac{12}{5}.


Given cosα=0.8\cos\alpha = -0.8 and π2<α<π\frac{\pi}{2} < \alpha < \pi:

  1. Compute sinα\sin\alpha using sin2α+cos2α=1\sin^2\alpha + \cos^2\alpha = 1: sin2α=1cos2α=1(0.8)2=10.64=0.36.\sin^2\alpha = 1 - \cos^2\alpha = 1 - (-0.8)^2 = 1 - 0.64 = 0.36. \sin\alpha = 0.6, \quad \text{(positive because \alpha is in the 2nd quadrant)}.

  2. Compute tanα\tan\alpha: tanα=sinαcosα=0.60.8=34.\tan\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{0.6}{-0.8} = -\frac{3}{4}.


Would you like me to go into more detail for any specific part?

Expanding Questions:

  1. Can you derive the periodic solutions for trigonometric equations?
  2. Would you like to verify the ranges of α\alpha for sine and cosine properties?
  3. How do transformations in sine or cosine affect their zeros?
  4. Can you visualize the solutions on the unit circle for better understanding?
  5. Should I help plot or tabulate these values for clarity?

Tip: Always use the unit circle to confirm signs of trigonometric values in different quadrants.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric equations
Trigonometric functions
Unit circle

Formulas

cos²x + sin²x = 1
tan x = sin x / cos x
Periodicity and symmetry of trigonometric functions

Theorems

Pythagorean trigonometric identity
Periodic properties of sine and cosine functions

Suitable Grade Level

Grades 10-12