Math Problem Statement

Solve the equation: tan(45) = ( (9 - y) / 5 - 6 / 11 ) / ( 1 + ( (9 - y) / 5 ) * (6 / 11) ).

Solution

The equation you provided is:

tan(45)=9y56111+(9y5)(611)\tan(45^\circ) = \frac{\frac{9 - y}{5} - \frac{6}{11}}{1 + \left(\frac{9 - y}{5}\right)\left(\frac{6}{11}\right)}

Since tan(45)=1\tan(45^\circ) = 1, we can set the left side equal to 1:

1=9y56111+(9y5)(611)1 = \frac{\frac{9 - y}{5} - \frac{6}{11}}{1 + \left(\frac{9 - y}{5}\right)\left(\frac{6}{11}\right)}

Next, let's solve for yy.

Step 1: Multiply both sides of the equation by the denominator on the right-hand side to clear the fraction:

1×(1+(9y5)(611))=9y56111 \times \left(1 + \left(\frac{9 - y}{5}\right)\left(\frac{6}{11}\right)\right) = \frac{9 - y}{5} - \frac{6}{11}

This simplifies to: 1+(9y5)(611)=9y56111 + \left(\frac{9 - y}{5}\right)\left(\frac{6}{11}\right) = \frac{9 - y}{5} - \frac{6}{11}

Step 2: Eliminate the fractions by multiplying through by the least common denominator (LCD) of 55 (since 5 and 11 are the denominators):

55×(1+(9y5×611))=55×(9y5611)55 \times \left(1 + \left(\frac{9 - y}{5} \times \frac{6}{11}\right)\right) = 55 \times \left(\frac{9 - y}{5} - \frac{6}{11}\right)

Simplifying the fractions: 55+(55×9y5×611)=11(9y)5(6)55 + \left(55 \times \frac{9 - y}{5} \times \frac{6}{11}\right) = 11(9 - y) - 5(6)

The term on the left simplifies as: [ 55 + 6(9 - y) =

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Algebra
Solving Equations

Formulas

tan(45°) = 1
tan(A - B) = (tan A - tan B) / (1 + tan A * tan B)

Theorems

Trigonometric Identity
Algebraic Manipulation

Suitable Grade Level

Grades 10-12