Math Problem Statement

  1. tan πœ‹ 4 ― πœƒ = cos πœƒ sin πœƒ cos πœƒ sin πœƒ tan πœ‹ 4 ― πœƒ = tan πœ‹ 4 ― tan πœƒ 1 + tan πœ‹ 4 tan πœƒ = 1 ― tan πœƒ 1 + 1 tan πœƒ

Solution

We will simplify and verify the given equation step by step.

Given equation:

tan⁑(Ο€4βˆ’ΞΈ)=cos⁑θsin⁑θcos⁑θsin⁑θ\tan \left(\frac{\pi}{4} - \theta\right) = \frac{\cos\theta \sin\theta}{\cos\theta \sin\theta}

Since the right-hand side simplifies to 1, this equation reduces to: tan⁑(Ο€4βˆ’ΞΈ)=1\tan \left(\frac{\pi}{4} - \theta\right) = 1

Now, using the tangent subtraction formula: tan⁑(Aβˆ’B)=tan⁑Aβˆ’tan⁑B1+tan⁑Atan⁑B\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}

Let A=Ο€4A = \frac{\pi}{4} and B=ΞΈB = \theta, so: tan⁑(Ο€4βˆ’ΞΈ)=tan⁑π4βˆ’tan⁑θ1+tan⁑π4tan⁑θ\tan \left(\frac{\pi}{4} - \theta\right) = \frac{\tan \frac{\pi}{4} - \tan \theta}{1 + \tan \frac{\pi}{4} \tan \theta}

Since tan⁑π4=1\tan \frac{\pi}{4} = 1, we substitute:

tan⁑(Ο€4βˆ’ΞΈ)=1βˆ’tan⁑θ1+tan⁑θ\tan \left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan \theta}{1 + \tan \theta}

Thus, we get: 1βˆ’tan⁑θ1+tan⁑θ=1\frac{1 - \tan \theta}{1 + \tan \theta} = 1

For this equation to hold true: 1βˆ’tan⁑θ=1+tan⁑θ1 - \tan \theta = 1 + \tan \theta

which simplifies to: βˆ’tan⁑θ=tan⁑θ- \tan \theta = \tan \theta

This implies: tan⁑θ=0\tan \theta = 0

which happens when: ΞΈ=kΟ€,k∈Z\theta = k\pi, \quad k \in \mathbb{Z}

Conclusion:

The equation holds only for ΞΈ=kΟ€\theta = k\pi, where kk is any integer.


Would you like a more detailed breakdown? Let me know! Here are some related questions to explore:

  1. What is the general formula for tan⁑(Aβˆ’B)\tan(A - B)?
  2. How does the tangent function behave at different quadrants?
  3. Why is tan⁑π4=1\tan \frac{\pi}{4} = 1?
  4. What happens when tan⁑θ=0\tan \theta = 0, and how do we find such angles?
  5. How can we prove the identity using sine and cosine instead of tangent?

Tip: The identity tan⁑(Aβˆ’B)=tan⁑Aβˆ’tan⁑B1+tan⁑Atan⁑B\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} is useful in trigonometry, especially in transformations and proofs.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Tangent Function
Tangent Subtraction Formula

Formulas

tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)
tan(πœ‹/4) = 1

Theorems

Tangent Subtraction Formula

Suitable Grade Level

Grades 9-12