Math Problem Statement

tan(arccos(5/13) + arcsin(3/5)) = ?

Solution

The problem presented is:

tan(arccos(513)+arcsin(35))=?\text{tan}\left( \arccos\left(\frac{5}{13}\right) + \arcsin\left(\frac{3}{5}\right)\right) = ?

Let's break this down step by step.

Step 1: Understanding the values

  • arccos(513)\arccos\left(\frac{5}{13}\right) gives the angle whose cosine is 513\frac{5}{13}.
  • arcsin(35)\arcsin\left(\frac{3}{5}\right) gives the angle whose sine is 35\frac{3}{5}.

Step 2: Use of Pythagoras for arccos(513)\arccos\left(\frac{5}{13}\right)

For arccos(513)\arccos\left(\frac{5}{13}\right), we have:

  • Adjacent side = 5
  • Hypotenuse = 13

Using the Pythagorean theorem to find the opposite side: opposite=13252=16925=144=12\text{opposite} = \sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12 Thus, sin(θ)=1213\sin(\theta) = \frac{12}{13} for the angle θ=arccos(513)\theta = \arccos\left(\frac{5}{13}\right).

Step 3: For arcsin(35)\arcsin\left(\frac{3}{5}\right)

For arcsin(35)\arcsin\left(\frac{3}{5}\right), we have:

  • Opposite side = 3
  • Hypotenuse = 5

Using the Pythagorean theorem to find the adjacent side: adjacent=5232=259=16=4\text{adjacent} = \sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4 Thus, cos(ϕ)=45\cos(\phi) = \frac{4}{5} for the angle ϕ=arcsin(35)\phi = \arcsin\left(\frac{3}{5}\right).

Step 4: Using the tangent addition formula

We now want to compute: tan(θ+ϕ)\text{tan}(\theta + \phi) Using the identity for the tangent of a sum of two angles: tan(θ+ϕ)=tan(θ)+tan(ϕ)1tan(θ)tan(ϕ)\text{tan}(\theta + \phi) = \frac{\text{tan}(\theta) + \text{tan}(\phi)}{1 - \text{tan}(\theta)\text{tan}(\phi)} We already know: tan(θ)=sin(θ)cos(θ)=125,tan(ϕ)=34\text{tan}(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{12}{5}, \quad \text{tan}(\phi) = \frac{3}{4}

Now, applying the tangent addition formula: tan(θ+ϕ)=125+341(12534)\text{tan}(\theta + \phi) = \frac{\frac{12}{5} + \frac{3}{4}}{1 - \left(\frac{12}{5} \cdot \frac{3}{4}\right)}

Step 5: Simplifying the expression

Let's calculate the sum and product in the formula. I'll compute this.The value of tan(arccos(513)+arcsin(35))\tan\left(\arccos\left(\frac{5}{13}\right) + \arcsin\left(\frac{3}{5}\right)\right) is approximately 3.9375-3.9375.

Would you like a detailed explanation of any specific step, or have any further questions?

Here are 5 related questions to deepen your understanding:

  1. How is the Pythagorean theorem used to find the missing side in right-angled triangles?
  2. What is the tangent addition formula, and when is it useful?
  3. Why does arccos\arccos and arcsin\arcsin yield angles whose trigonometric identities are useful in such problems?
  4. How do we simplify complex trigonometric expressions like tan(θ+ϕ)\tan(\theta + \phi)?
  5. What are the domain and range limitations for inverse trigonometric functions?

Tip: When dealing with multiple trigonometric functions, simplifying one step at a time helps avoid calculation mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Inverse Trigonometric Functions
Tangent Addition Formula

Formulas

tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ))
Pythagorean theorem: a^2 + b^2 = c^2

Theorems

Pythagorean theorem
Trigonometric identity for sum of tangents

Suitable Grade Level

Grades 10-12