Math Problem Statement

how to solve the following system of differential equations using the matrix method

Solution

To solve a system of differential equations using the matrix method, follow these steps:

Example System of Differential Equations:

Suppose you are given the system: dxdt=ax+by\frac{dx}{dt} = ax + by dydt=cx+dy\frac{dy}{dt} = cx + dy

This can be written in matrix form as: dXdt=AX,\frac{d\mathbf{X}}{dt} = A\mathbf{X}, where: X=[xy],A=[abcd].\mathbf{X} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.

Step-by-Step Solution:

  1. Write the system in matrix form: Express the system as dXdt=AX\frac{d\mathbf{X}}{dt} = A\mathbf{X}, where AA is the coefficient matrix.

  2. Find the eigenvalues of AA: Solve the characteristic equation det(AλI)=0\det(A - \lambda I) = 0 to find the eigenvalues λ1\lambda_1 and λ2\lambda_2.

  3. Find the eigenvectors of AA: For each eigenvalue λi\lambda_i, solve (AλiI)v=0(A - \lambda_i I)\mathbf{v} = 0 to find the eigenvectors vi\mathbf{v}_i.

  4. Construct the general solution: The solution to the system can be written as: X(t)=C1eλ1tv1+C2eλ2tv2,\mathbf{X}(t) = C_1 e^{\lambda_1 t} \mathbf{v}_1 + C_2 e^{\lambda_2 t} \mathbf{v}_2, where C1C_1 and C2C_2 are constants determined by initial conditions, and v1,v2\mathbf{v}_1, \mathbf{v}_2 are the eigenvectors.

  5. Apply initial conditions: Substitute the initial conditions (e.g., X(0)=[x0y0]\mathbf{X}(0) = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}) to solve for C1C_1 and C2C_2.


Example:

Suppose A=[2112]A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.

  1. Find eigenvalues: det(AλI)=det[2λ112λ]=(2λ)21=λ24λ+3=0.\det(A - \lambda I) = \det\begin{bmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{bmatrix} = (2-\lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = 0. Solving, λ=1,3\lambda = 1, 3.

  2. Find eigenvectors: For λ=1\lambda = 1: (AI)v=[1111][v1v2]=0    v1=v2.(A - I)\mathbf{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0 \implies v_1 = -v_2. Choose v1=[11]\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.

    For λ=3\lambda = 3: (A3I)v=[1111][v1v2]=0    v1=v2.(A - 3I)\mathbf{v} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0 \implies v_1 = v_2. Choose v2=[11]\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.

  3. Construct general solution: X(t)=C1et[11]+C2e3t[11].\mathbf{X}(t) = C_1 e^{t}\begin{bmatrix} 1 \\ -1 \end{bmatrix} + C_2 e^{3t}\begin{bmatrix} 1 \\ 1 \end{bmatrix}.

  4. Apply initial conditions (if provided) to find C1C_1 and C2C_2.

Would you like further clarification or an example with initial conditions solved?


Related Questions:

  1. How do you compute eigenvalues and eigenvectors for higher-dimensional matrices?
  2. What happens when the eigenvalues are complex?
  3. How can you use diagonalization to solve systems of differential equations?
  4. Can you solve systems with non-constant coefficients using the matrix method?
  5. How do repeated eigenvalues affect the solution of the system?

Tip:

For systems with complex eigenvalues, the solution will involve sine and cosine terms due to Euler's formula, eiθ=cosθ+isinθe^{i\theta} = \cos\theta + i\sin\theta.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
Linear Algebra
Matrix Methods
Eigenvalues and Eigenvectors

Formulas

Matrix form: dX/dt = AX
Characteristic equation: det(A - λI) = 0
General solution: X(t) = C1e^(λ1t)V1 + C2e^(λ2t)V2

Theorems

Eigenvalue Theorem
Diagonalization of Matrices
Euler's Formula for Complex Solutions

Suitable Grade Level

Undergraduate Level (First-Year Mathematics or Differential Equations Course)