Math Problem Statement

Anthony is solving a system of linear equation using substitution.

6x−2y=10 y=3x−5

Which equation represents the first step for Anthony to solve the system? A.6x−3x−5=10

B.6(3x−5)−2y=10

C.6x−2(3x−5)=10

D.6x−2x−5=10

Solution

To solve the system of linear equations using substitution, Anthony would first substitute the expression for yy from the second equation y=3x5y = 3x - 5 into the first equation 6x2y=106x - 2y = 10.

Let's substitute y=3x5y = 3x - 5 into the first equation:

6x2(3x5)=106x - 2(3x - 5) = 10

This corresponds to option C: 6x2(3x5)=106x - 2(3x - 5) = 10.

Would you like a detailed breakdown of the solution process or any further clarifications?

Here are 5 related questions you might consider:

  1. How do you solve the equation 6x2(3x5)=106x - 2(3x - 5) = 10?
  2. What is the general method for solving systems of equations by substitution?
  3. Can you solve this system using the elimination method instead?
  4. What are some other methods for solving systems of linear equations?
  5. How do you check if your solution to a system of equations is correct?

Tip: When solving by substitution, always substitute the variable's value carefully to avoid mistakes in signs or operations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Linear Equations
Substitution Method

Formulas

Substitution: y = 3x - 5 into 6x - 2y = 10

Theorems

System of Linear Equations
Substitution Method

Suitable Grade Level

Grades 8-10