Math Problem Statement

Solve this

Máme zadanou racionální lomenou funkci \( \frac{2x^2 + 2x + 3}{(x+2)^3} \) a k ní formální tvar rozkladu na parciální zlomky \( \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{(x+2)^3} \). Jaká čísla je potřeba dosadit za \( x \), abychom získali následující soustavu lineárních rovnic pro neurčité koeficienty \( A, B, C \)? A + B + C = 2, 9A + 3B + C = 6, 16A + 4B + C = 11. Vyberte právě ta čísla, která jsou potřeba.

Solution

To solve this, we need to analyze the rational function given and then choose appropriate values for xx to simplify the system and determine constants AA, BB, and CC.

Problem Analysis

The function is given in a form suitable for partial fraction decomposition: 2x2+2x+3(x+2)3=Ax+2+B(x+2)2+C(x+2)3.\frac{2x^2 + 2x + 3}{(x+2)^3} = \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{(x+2)^3}.

To match both sides, we can clear the denominators by multiplying through by (x+2)3(x+2)^3, leading to an equation where the polynomial on the left equals a polynomial on the right. We then equate coefficients of like terms.

Equation System and Solution

We already have the following equations based on this comparison:

  1. A+B+C=2A + B + C = 2
  2. 9A+3B+C=69A + 3B + C = 6
  3. 16A+4B+C=1116A + 4B + C = 11

To solve these equations, we substitute values for xx that simplify the system.

Choosing Values for xx

The values of xx typically chosen in such setups are ones that simplify the polynomial terms and reveal values of AA, BB, and CC. In this case, we look for values that make the individual terms zero or yield simple relationships among AA, BB, and CC.

Let’s review each choice for its suitability:

  1. x=2x = -2: This would be useful as it zeros out certain terms.
  2. Other values: 0, -1, -4, 3, -3, 1, and 2 are typically tested to observe their impact on simplifying the equations.

Thus, based on the standard partial fraction approach, we should select values that make substitution straightforward while ensuring they satisfy all three equations

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Partial Fraction Decomposition
Rational Functions
Systems of Linear Equations

Formulas

Partial fraction decomposition: \( \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{(x+2)^3} \)
Solving linear systems of equations

Theorems

Methods for solving systems of linear equations

Suitable Grade Level

Grades 10-12