Math Problem Statement
Pranay, Rohit, and Qureshi bought some marbles. If Rohit gave 2 marbles to Qureshi, the ratio of the number of marbles with Pranay, Rohit, and Qureshi would become 1:3:3. Had Rohit given 2 marbles to Pranay, then the ratio of the number of marbles with them would have become 2:3:2. What will be the ratio of the number of marbles with Pranay, Rohit, and Qureshi when 4 marbles are added to the number of marbles each one of
them already had?
Solution
Let's denote the number of marbles with Pranay, Rohit, and Qureshi as , , and respectively.
Step 1: Set Up Equations Based on Given Ratios
First scenario (Rohit gives 2 marbles to Qureshi): After giving 2 marbles to Qureshi:
- Pranay:
- Rohit:
- Qureshi:
The new ratio becomes:
From the first part:
From the second part:
Second scenario (Rohit gives 2 marbles to Pranay): After giving 2 marbles to Pranay:
- Pranay:
- Rohit:
- Qureshi:
The new ratio becomes:
From the first part:
From the second part:
Step 2: Solve the System of Equations
Substituting equation (1) into equations (2) and (3):
-
From (2):
-
Substituting from (1) into (3):
Step 3: Verify Correctness and Re-setup Equations
Returning to ratios and verifying, let's isolate and : Using equation (1): Substituting in :
Using the second scenario: Substituting into (4):
Step 4: Find , ,
Setting the equations for : From both equations:
Then: From (1): From (2):
Thus:
Step 5: Calculate Ratios After Adding 4 Marbles
Now when each has 4 additional marbles:
- Pranay:
- Rohit:
- Qureshi:
Final Ratio
Thus, the new ratio is:
Conclusion
The final ratio of the number of marbles with Pranay, Rohit, and Qureshi after adding 4 marbles each is:
Would you like more details or have any questions? Here are some related questions:
- What happens if Rohit gives 3 marbles to Qureshi instead?
- How would the ratios change if Pranay had started with 5 marbles?
- Can we find the total number of marbles they originally had?
- What would be the ratio if all three gave away 2 marbles each?
- How many marbles does each person have if we only change the addition to 3 marbles?
Tip: Always keep track of how many marbles each person starts with when solving ratio problems; it can help prevent confusion!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Ratios
Systems of Equations
Formulas
Setting up ratios: a:b implies a = k * b for some constant k
Systems of equations solution methods (substitution)
Theorems
Properties of ratios
Basic algebraic manipulation in systems of equations
Suitable Grade Level
Grades 9-10
Related Recommendation
Solving a Marble Ratio Problem: Reducing and Calculating Marbles
Solving a Marble Ratio Problem Using Algebra
Solving Marbles Transfer Problem: Ratio and Equation Approach
Solving Linear Equations to Find the Number of Marbles with Harish
Solve for Red Marbles in a Bag of 120 with a 19:1 Red-to-Black Ratio