SolutionLet's solve the problem with the corrected formula for p p p .
Given:
z = Bullets fired z = \text{Bullets fired} z = Bullets fired (values from 100 to 300 in multiples of 20)
The formula for total damage p p p is:
p = ( ( 0.5 ⋅ z − 9 ) × 122.5 ) + 2025 p = \left( (0.5 \cdot z - 9) \times 122.5 \right) + 2025 p = ( ( 0.5 ⋅ z − 9 ) × 122.5 ) + 2025
We will calculate p z \frac{p}{z} z p for z z z ranging from 100 to 300 in multiples of 20, and then calculate the percentage increase between successive values.
Calculations
For z = 100 z = 100 z = 100 :
p = ( ( 0.5 ⋅ 100 − 9 ) × 122.5 ) + 2025 p = \left( (0.5 \cdot 100 - 9) \times 122.5 \right) + 2025 p = ( ( 0.5 ⋅ 100 − 9 ) × 122.5 ) + 2025
p = ( ( 50 − 9 ) × 122.5 ) + 2025 p = \left( (50 - 9) \times 122.5 \right) + 2025 p = ( ( 50 − 9 ) × 122.5 ) + 2025
p = ( 41 × 122.5 ) + 2025 p = (41 \times 122.5) + 2025 p = ( 41 × 122.5 ) + 2025
p = 5022.5 + 2025 p = 5022.5 + 2025 p = 5022.5 + 2025
p = 7047.5 p = 7047.5 p = 7047.5
p z = 7047.5 100 = 70.475 \frac{p}{z} = \frac{7047.5}{100} = 70.475 z p = 100 7047.5 = 70.475
For z = 120 z = 120 z = 120 :
p = ( ( 0.5 ⋅ 120 − 9 ) × 122.5 ) + 2025 p = \left( (0.5 \cdot 120 - 9) \times 122.5 \right) + 2025 p = ( ( 0.5 ⋅ 120 − 9 ) × 122.5 ) + 2025
p = ( ( 60 − 9 ) × 122.5 ) + 2025 p = \left( (60 - 9) \times 122.5 \right) + 2025 p = ( ( 60 − 9 ) × 122.5 ) + 2025
p = ( 51 × 122.5 ) + 2025 p = (51 \times 122.5) + 2025 p = ( 51 × 122.5 ) + 2025
p = 6247.5 + 2025 p = 6247.5 + 2025 p = 6247.5 + 2025
p = 8272.5 p = 8272.5 p = 8272.5
p z = 8272.5 120 ≈ 68.9375 \frac{p}{z} = \frac{8272.5}{120} \approx 68.9375 z p = 120 8272.5 ≈ 68.9375
For z = 140 z = 140 z = 140 :
p = ( ( 0.5 ⋅ 140 − 9 ) × 122.5 ) + 2025 p = \left( (0.5 \cdot 140 - 9) \times 122.5 \right) + 2025 p = ( ( 0.5 ⋅ 140 − 9 ) × 122.5 ) + 2025
p = ( ( 70 − 9 ) × 122.5 ) + 2025 p = \left( (70 - 9) \times 122.5 \right) + 2025 p = ( ( 70 − 9 ) × 122.5 ) + 2025
p = ( 61 × 122.5 ) + 2025 p = (61 \times 122.5) + 2025 p = ( 61 × 122.5 ) + 2025
p = 7472.5 + 2025 p = 7472.5 + 2025 p = 7472.5 + 2025
p = 9497.5 p = 9497.5 p = 9497.5
p z = 9497.5 140 ≈ 67.8375 \frac{p}{z} = \frac{9497.5}{140} \approx 67.8375 z p = 140 9497.5 ≈ 67.8375
For z = 160 z = 160 z = 160 :
p = ( ( 0.5 ⋅ 160 − 9 ) × 122.5 ) + 2025 p = \left( (0.5 \cdot 160 - 9) \times 122.5 \right) + 2025 p = ( ( 0.5 ⋅ 160 − 9 ) × 122.5 ) + 2025
p = ( ( 80 − 9 ) × 122.5 ) + 2025 p = \left( (80 - 9) \times 122.5 \right) + 2025 p = ( ( 80 − 9 ) × 122.5 ) + 2025
p = ( 71 × 122.5 ) + 2025 p = (71 \times 122.5) + 2025 p = ( 71 × 122.5 ) + 2025
p = 8697.5 + 2025 p = 8697.5 + 2025 p = 8697.5 + 2025
p = 10722.5 p = 10722.5 p = 10722.5
p z = 10722.5 160 ≈ 67.015625 \frac{p}{z} = \frac{10722.5}{160} \approx 67.015625 z p = 160 10722.5 ≈ 67.015625
For z = 180 z = 180 z = 180 :
p = ( ( 0.5 ⋅ 180 − 9 ) × 122.5 ) + 2025 p = \left( (0.5 \cdot 180 - 9) \times 122.5 \right) + 2025 p = ( ( 0.5 ⋅ 180 − 9 ) × 122.5 ) + 2025
p = ( ( 90 − 9 ) × 122.5 ) + 2025 p = \left( (90 - 9) \times 122.5 \right) + 2025 p = ( ( 90 − 9 ) × 122.5 ) + 2025
p = ( 81 × 122.5 ) + 2025 p = (81 \times 122.5) + 2025 p = ( 81 × 122.5 ) + 2025
p = 9922.5 + 2025 p = 9922.5 + 2025 p = 9922.5 + 2025
p = 11947.5 p = 11947.5 p = 11947.5
p z = 11947.5 180 ≈ 66.375 \frac{p}{z} = \frac{11947.5}{180} \approx 66.375 z p = 180 11947.5 ≈ 66.375
For z = 200 z = 200 z = 200 :
p = ( ( 0.5 ⋅ 200 − 9 ) × 122.5 ) + 2025 p = \left( (0.5 \cdot 200 - 9) \times 122.5 \right) + 2025 p = ( ( 0.5 ⋅ 200 − 9 ) × 122.5 ) + 2025
p = ( ( 100 − 9 ) × 122.5 ) + 2025 p = \left( (100 - 9) \times 122.5 \right) + 2025 p = ( ( 100 − 9 ) × 122.5 ) + 2025
p = ( 91 × 122.5 ) + 2025 p = (91 \times 122.5) + 2025 p = ( 91 × 122.5 ) + 2025
p = 11147.5 + 2025 p = 11147.5 + 2025 p = 11147.5 + 2025
p = 13172.5 p = 13172.5 p = 13172.5
[
\frac{p}{z} = \frac{13172.5}{200