Math Problem Statement
If \( \int \frac{x^{4}+1}{x^{6}+1} d x=\tan ^{-1} f(x)-\frac{2}{3} \tan ^{-1} g(x)+C \) then \\ (a) \( f(x)=x+\frac{1}{x} \) \\ (b) \( f(x)=x-\frac{1}{x} \) \\ (c) \( g(x)=x^{-3} \) \\ (d) \( g(x)=x^{3} \)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Integration
Partial fractions
Inverse trigonometric functions
Formulas
Partial fraction decomposition
Theorems
Integral calculus
Properties of inverse trigonometric functions
Suitable Grade Level
College
Related Recommendation
Integration of 1/(1 + sqrt(tan(x))) Using Substitution and Advanced Methods
Solve the Integral of (tan^{-1}x)^2/(x^2 + 1)
Integral of 4x^2 tan(x^3) dx: Step-by-Step Solution
How to Integrate tan^3(4x) Using Trigonometric Identities
Evaluate the Integral ∫(x^4 / (x^10 + 1)) dx using Substitution and Trigonometric Functions