Math Problem Statement

solve

solve

Solution

Let's solve the integral step by step:

02π[2cost+tcost+sin2t]dt\int_0^{2\pi} \left[ 2\cos t + t \cos t + \sin^2 t \right] \, dt

Step 1: Break the integral into parts

02π[2cost+tcost+sin2t]dt=02π2costdt+02πtcostdt+02πsin2tdt\int_0^{2\pi} \left[ 2\cos t + t \cos t + \sin^2 t \right] \, dt = \int_0^{2\pi} 2\cos t \, dt + \int_0^{2\pi} t \cos t \, dt + \int_0^{2\pi} \sin^2 t \, dt

Step 2: Solve each term

(a) First term: 02π2costdt\int_0^{2\pi} 2\cos t \, dt

The integral of 2cost2\cos t is: 2costdt=2sint\int 2\cos t \, dt = 2\sin t Evaluate over [0,2π][0, 2\pi]: 2sint02π=2sin(2π)2sin(0)=00=02\sin t \Big|_0^{2\pi} = 2\sin(2\pi) - 2\sin(0) = 0 - 0 = 0

(b) Second term: 02πtcostdt\int_0^{2\pi} t\cos t \, dt

This requires integration by parts: Let u=tu = t and dv=costdtdv = \cos t \, dt, so du=dtdu = dt and v=sintv = \sin t.

Using the integration by parts formula: udv=uvvdu\int u \, dv = uv - \int v \, du We get: tcostdt=tsintsintdt\int t \cos t \, dt = t \sin t - \int \sin t \, dt The integral of sint\sin t is cost-\cos t, so: tcostdt=tsint+cost\int t \cos t \, dt = t \sin t + \cos t Evaluate over [0,2π][0, 2\pi]: [tsint+cost]02π=(2πsin(2π)+cos(2π))(0sin(0)+cos(0))\left[ t \sin t + \cos t \right]_0^{2\pi} = \left( 2\pi \sin(2\pi) + \cos(2\pi) \right) - \left( 0 \sin(0) + \cos(0) \right) Since sin(2π)=0\sin(2\pi) = 0, cos(2π)=1\cos(2\pi) = 1, and cos(0)=1\cos(0) = 1: [tsint+cost]02π=(2π0+1)(0+1)=11=0\left[ t \sin t + \cos t \right]_0^{2\pi} = (2\pi \cdot 0 + 1) - (0 + 1) = 1 - 1 = 0

(c) Third term: 02πsin2tdt\int_0^{2\pi} \sin^2 t \, dt

Use the trigonometric identity sin2t=1cos(2t)2\sin^2 t = \frac{1 - \cos(2t)}{2}: 02πsin2tdt=02π1cos(2t)2dt=1202π1dt1202πcos(2t)dt\int_0^{2\pi} \sin^2 t \, dt = \int_0^{2\pi} \frac{1 - \cos(2t)}{2} \, dt = \frac{1}{2} \int_0^{2\pi} 1 \, dt - \frac{1}{2} \int_0^{2\pi} \cos(2t) \, dt

  • First term: 1202π1dt=12[t]02π=12(2π0)=π\frac{1}{2} \int_0^{2\pi} 1 \, dt = \frac{1}{2} \cdot \left[t\right]_0^{2\pi} = \frac{1}{2} (2\pi - 0) = \pi
  • Second term: 1202πcos(2t)dt\frac{1}{2} \int_0^{2\pi} \cos(2t) \, dt The integral of cos(2t)\cos(2t) is sin(2t)2\frac{\sin(2t)}{2}, so: [ \frac{1}{2} \int_0^{2\pi} \cos(2t) , dt = \frac{1}{2} \cdot \left[\frac{\sin(2t)}{2}\right]_0^{2\pi} = \frac{1}{4} \left[\sin(4\pi) - \sin(0)\right] = \frac{1}{4} (0 - 0) = 0 ] Thus: 02πsin2tdt=π\int_0^{2\pi} \sin^2 t \, dt = \pi

Step 3: Combine results

02π[2cost+tcost+sin2t]dt=0+0+π=π\int_0^{2\pi} \left[ 2\cos t + t \cos t + \sin^2 t \right] \, dt = 0 + 0 + \pi = \pi

Final Answer:

π\boxed{\pi}

Would you like a detailed explanation of any step?


Here are some related questions to deepen understanding:

  1. How do trigonometric identities simplify integrals involving sin2t\sin^2 t or cos2t\cos^2 t?
  2. Why does 02πcostdt\int_0^{2\pi} \cos t \, dt evaluate to 0 over a full period?
  3. What is the role of symmetry in simplifying periodic function integrals?
  4. How does integration by parts work for terms like tcostt \cos t?
  5. What are other common methods to evaluate sin2t\sin^2 t integrals?

Tip: Always check for periodicity and symmetry when dealing with trigonometric integrals over [0,2π][0, 2\pi] or similar intervals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integrals
Trigonometry
Integration by Parts
Trigonometric Identities

Formulas

\int 2\cos t \, dt = 2\sin t
\int t\cos t \, dt = t\sin t + \cos t
\int \sin^2 t \, dt = \frac{1}{2} \int_0^{2\pi} 1 \, dt - \frac{1}{2} \int_0^{2\pi} \cos(2t) \, dt

Theorems

Integration by Parts
Trigonometric Identity for \sin^2 t

Suitable Grade Level

Grades 11-12