Math Problem Statement
Solve the inequality 1/x > 2.
Solution
The inequality in the image is:
To solve this inequality for , we proceed as follows:
Step 1: Isolate
Multiply both sides of the inequality by to eliminate the fraction. However, since could be positive or negative, we must consider two cases.
Case 1:
- If , then multiplying by doesn't change the inequality sign:
Case 2:
- If , then multiplying by will reverse the inequality sign: However, this would contradict our initial assumption that . Thus, there is no valid solution in this case.
Step 2: Combine the results
From Case 1, the solution is , provided .
Final Solution
The solution to the inequality is:
This means must be positive and less than .
Would you like any additional details or have any further questions?
Follow-up Questions:
- What is the solution to ?
- How does the solution change if the inequality is ?
- What happens if ?
- Can you solve where and are both positive?
- How do you solve a quadratic inequality such as ?
Tip:
When solving inequalities involving fractions, always consider the sign of the variable to correctly determine the direction of the inequality.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Inequalities
Formulas
1/x > 2
Theorems
Multiplication property of inequalities
Suitable Grade Level
Grades 9-11