Math Problem Statement

cos(2theta)=square root3/2

Solution

To solve the equation:

cos(2θ)=32\cos(2\theta) = \frac{\sqrt{3}}{2}

we proceed as follows:

Step 1: Identify possible angles for 2θ2\theta

The cosine function equals 32\frac{\sqrt{3}}{2} at two standard angles in the unit circle:

2θ=30or2θ=36030=3302\theta = 30^\circ \quad \text{or} \quad 2\theta = 360^\circ - 30^\circ = 330^\circ

In radians, this corresponds to:

2θ=π6or2θ=2ππ6=11π62\theta = \frac{\pi}{6} \quad \text{or} \quad 2\theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}

Step 2: Solve for θ\theta

Now, divide both sides by 2 to find θ\theta:

  1. From 2θ=302\theta = 30^\circ, we get: θ=302=15orθ=π12 in radians.\theta = \frac{30^\circ}{2} = 15^\circ \quad \text{or} \quad \theta = \frac{\pi}{12} \text{ in radians}.

  2. From 2θ=3302\theta = 330^\circ, we get: θ=3302=165orθ=11π12 in radians.\theta = \frac{330^\circ}{2} = 165^\circ \quad \text{or} \quad \theta = \frac{11\pi}{12} \text{ in radians}.

Step 3: General solution

The cosine function is periodic with period 360360^\circ (or 2π2\pi radians), so the general solutions are:

θ=15+180norθ=165+180n\theta = 15^\circ + 180^\circ n \quad \text{or} \quad \theta = 165^\circ + 180^\circ n where nn is any integer.

In radians, this becomes:

θ=π12+nπorθ=11π12+nπ\theta = \frac{\pi}{12} + n\pi \quad \text{or} \quad \theta = \frac{11\pi}{12} + n\pi

Final Answer:

θ=15+180norθ=165+180n(degrees)\theta = 15^\circ + 180^\circ n \quad \text{or} \quad \theta = 165^\circ + 180^\circ n \quad \text{(degrees)} θ=π12+nπorθ=11π12+nπ(radians)\theta = \frac{\pi}{12} + n\pi \quad \text{or} \quad \theta = \frac{11\pi}{12} + n\pi \quad \text{(radians)}

Would you like more details or explanations on any of these steps?

Related Questions:

  1. What is the general form of solutions for cosine equations?
  2. How do periodic functions affect solutions in trigonometry?
  3. How do we convert between degrees and radians?
  4. How does the unit circle help solve trigonometric equations?
  5. How do you solve similar equations involving sine or tangent?

Tip: Always check for the periodicity of trigonometric functions when solving for angles.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Unit Circle
Cosine Function
Periodicity

Formulas

cos(2θ) = √3/2
General solution for cosine: θ = θ₀ + 360°n or θ₀ + 2πn (radians)

Theorems

Unit Circle
Cosine Function Properties

Suitable Grade Level

Grades 10-12