Math Problem Statement

solve this 3z^2 + (4i − 7)z + (1 − 3i) = 0

Solution

To solve the complex quadratic equation:

3z2+(4i7)z+(13i)=03z^2 + (4i - 7)z + (1 - 3i) = 0

we’ll use the quadratic formula:

z=b±b24ac2az = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where:

  • a=3a = 3
  • b=4i7b = 4i - 7
  • c=13ic = 1 - 3i

Step 1: Calculate b24acb^2 - 4ac

  1. Find b2b^2:

    b2=(4i7)2=(4i)2+2(4i)(7)+(7)2b^2 = (4i - 7)^2 = (4i)^2 + 2 \cdot (4i) \cdot (-7) + (-7)^2 =16i256i+49=16(1)56i+49=1656i+49=3356i= 16i^2 - 56i + 49 = 16(-1) - 56i + 49 = -16 - 56i + 49 = 33 - 56i

  2. Calculate 4ac4ac:

    4ac=43(13i)=12(13i)=1236i4ac = 4 \cdot 3 \cdot (1 - 3i) = 12 \cdot (1 - 3i) = 12 - 36i

  3. Compute b24acb^2 - 4ac:

    b24ac=(3356i)(1236i)=2120ib^2 - 4ac = (33 - 56i) - (12 - 36i) = 21 - 20i

Step 2: Find b24ac\sqrt{b^2 - 4ac}

To find the square root of 2120i21 - 20i, we convert it to polar form:

  1. Magnitude: 2120i=212+(20)2=441+400=841=29|21 - 20i| = \sqrt{21^2 + (-20)^2} = \sqrt{441 + 400} = \sqrt{841} = 29

  2. Argument: θ=tan1(2021)\theta = \tan^{-1}\left(\frac{-20}{21}\right)

So 2120i21 - 20i in polar form is 29cis(θ)29 \text{cis}(\theta), and its square root is 29cis(θ/2)\sqrt{29} \text{cis}(\theta/2).

Step 3: Solve for zz

With this square root, substitute back into the quadratic formula to solve for zz.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Complex Numbers
Quadratic Equations

Formulas

Quadratic formula: z = (-b ± √(b² - 4ac)) / 2a

Theorems

Quadratic formula
Complex number operations

Suitable Grade Level

Grades 11-12