Math Problem Statement

Find the value of x and the value of y in the following equation, give that

π‘₯(1 + 𝑖)

2 + 𝑦(2 βˆ’ 𝑖)

2 = 3 + 10𝑖 where π‘₯ ∈ 𝑅 π‘Žπ‘›π‘‘ 𝑦 ∈ 𝑅

B) Given that 𝑧 = βˆ’3 + 4𝑖 π‘Žπ‘›π‘‘ 𝑧𝑀 = βˆ’14 + 2𝑖, find

𝑖) 𝑀 in the form π‘Ž + 𝑖𝑏, where π‘Ž π‘Žπ‘›π‘‘ 𝑏 are real numbers.

𝑖𝑖) the modulus and the argument of 𝑀.

Solution

Let's solve each part of the problem step by step.

Part A: Find the values of xx and yy

Given: x(1+i)2+y(2βˆ’i)2=3+10ix(1 + i)^2 + y(2 - i)^2 = 3 + 10i where xx and yy are real numbers.

  1. Expand the complex squares:

    • (1+i)2=12+2i+i2=1+2iβˆ’1=2i(1 + i)^2 = 1^2 + 2i + i^2 = 1 + 2i - 1 = 2i
    • (2βˆ’i)2=22βˆ’2Γ—2Γ—i+i2=4βˆ’4iβˆ’1=3βˆ’4i(2 - i)^2 = 2^2 - 2 \times 2 \times i + i^2 = 4 - 4i - 1 = 3 - 4i

    Thus, the equation becomes: x(2i)+y(3βˆ’4i)=3+10ix(2i) + y(3 - 4i) = 3 + 10i

  2. Distribute xx and yy: 2xi+3yβˆ’4yi=3+10i2xi + 3y - 4yi = 3 + 10i

    Group the real and imaginary parts: (3y)+(2xβˆ’4y)i=3+10i(3y) + (2x - 4y)i = 3 + 10i

  3. Set up the system of equations:

    • For the real part: 3y=33y = 3
    • For the imaginary part: 2xβˆ’4y=102x - 4y = 10
  4. Solve the system of equations:

    From 3y=33y = 3, we get: y=1y = 1 Substitute y=1y = 1 into 2xβˆ’4y=102x - 4y = 10: 2xβˆ’4(1)=102x - 4(1) = 10 2xβˆ’4=102x - 4 = 10 2x=14β€…β€ŠβŸΉβ€…β€Šx=72x = 14 \implies x = 7

So, the values are: x=7,y=1x = 7, \quad y = 1

Part B: Given z=βˆ’3+4iz = -3 + 4i and zw=βˆ’14+2izw = -14 + 2i

  1. Find ww in the form a+iba + ib:

    Given zw=βˆ’14+2izw = -14 + 2i and z=βˆ’3+4iz = -3 + 4i, find ww.

    Let w=a+ibw = a + ib. Then: (βˆ’3+4i)(a+ib)=βˆ’14+2i(-3 + 4i)(a + ib) = -14 + 2i

    Expand and equate real and imaginary parts: βˆ’3aβˆ’3ib+4ai+4ib2=βˆ’14+2i-3a - 3ib + 4ai + 4ib^2 = -14 + 2i (βˆ’3aβˆ’4b)+(4aβˆ’3b)i=βˆ’14+2i(-3a - 4b) + (4a - 3b)i = -14 + 2i

    Set up the system of equations: βˆ’3aβˆ’4b=βˆ’14(Real part)-3a - 4b = -14 \quad \text{(Real part)} 4aβˆ’3b=2(Imaginary part)4a - 3b = 2 \quad \text{(Imaginary part)}

    Solve these equations:

    From βˆ’3aβˆ’4b=βˆ’14-3a - 4b = -14: 3a+4b=143a + 4b = 14

    Solve the system:

    3a + 4b = 14 \\ 4a - 3b = 2 \end{cases}$$ Multiply the first equation by 3 and the second by 4: $$9a + 12b = 42$$ $$16a - 12b = 8$$ Add the equations: $$25a = 50 \implies a = 2$$ Substitute $$a = 2$$ into $$3a + 4b = 14$$: $$3(2) + 4b = 14 \implies 6 + 4b = 14 \implies 4b = 8 \implies b = 2$$ Therefore, $$w = 2 + 2i$$.
  2. Find the modulus and argument of ww:

    • Modulus: ∣w∣=a2+b2=22+22=4+4=8=22|w| = \sqrt{a^2 + b^2} = \sqrt{2^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}

    • Argument: arg⁑(w)=tanβ‘βˆ’1(ba)=tanβ‘βˆ’1(22)=tanβ‘βˆ’1(1)=Ο€4\arg(w) = \tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{2}{2}\right) = \tan^{-1}(1) = \frac{\pi}{4}

Summary:

  1. Values of xx and yy: x=7,y=1x = 7, \quad y = 1

  2. For ww:

    • w=2+2iw = 2 + 2i
    • ∣w∣=22|w| = 2\sqrt{2}
    • arg⁑(w)=Ο€4\arg(w) = \frac{\pi}{4}

Do you want details or have any questions?

Here are 5 relative questions for you:

  1. How do you multiply two complex numbers?
  2. How is the modulus of a complex number calculated?
  3. What are the standard forms of complex numbers?
  4. How does the argument of a complex number relate to its position on the complex plane?
  5. What does solving simultaneous equations involve?

Tip: When solving for real and imaginary parts in complex equations, separate the components carefully to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex numbers
Quadratic equations
Systems of equations

Formulas

Expansion of complex squares
System of linear equations

Theorems

-

Suitable Grade Level

High School