Math Problem Statement

2(-3)(-1)^3-7(-2)/6(-1)^4+8(-2), 5(-1)-2(6(-3)-(-2)^3), 12(-3)-4(-2)^2+7(-1)^6/-3^2

Solution

Let's break down and solve each of the expressions step by step.

Expression 1:

2(3)(1)37(2)/6(1)4+8(2)2(-3)(-1)^3 - 7(-2)/6(-1)^4 + 8(-2)

  1. Calculate (1)3=1(-1)^3 = -1.
  2. Calculate 2(3)(1)=62(-3)(-1) = 6.
  3. Calculate (1)4=1(-1)^4 = 1.
  4. Calculate 7(2)/6(1)=14/6=7/37(-2)/6(1) = -14/6 = -7/3.
  5. Calculate 8(2)=168(-2) = -16.

Now, substitute these into the expression: 67316=67316=18373483=187483=373=3736 - \frac{7}{3} - 16 = 6 - \frac{7}{3} - 16 = \frac{18}{3} - \frac{7}{3} - \frac{48}{3} = \frac{18 - 7 - 48}{3} = \frac{-37}{3} = -\frac{37}{3}

Expression 2:

5(1)2(6(3)(2)3)5(-1) - 2(6(-3) - (-2)^3)

  1. Calculate 5(1)=55(-1) = -5.
  2. Calculate 6(3)=186(-3) = -18.
  3. Calculate (2)3=8(-2)^3 = -8.
  4. Calculate 18(8)=18+8=10-18 - (-8) = -18 + 8 = -10.
  5. Calculate 2(10)=20-2(-10) = 20.

Now, substitute these into the expression: 5+20=15-5 + 20 = 15

Expression 3:

12(3)4(2)2+7(1)63212(-3) - 4(-2)^2 + \frac{7(-1)^6}{-3^2}

  1. Calculate 12(3)=3612(-3) = -36.
  2. Calculate (2)2=4(-2)^2 = 4 and then 4(4)=164(-4) = -16.
  3. Calculate (1)6=1(-1)^6 = 1.
  4. Calculate 32=9-3^2 = 9 and then 7(1)9=79\frac{7(1)}{9} = \frac{7}{9}.

Now, substitute these into the expression: 3616+79=52+79=4689+79=4619-36 - 16 + \frac{7}{9} = -52 + \frac{7}{9} = -\frac{468}{9} + \frac{7}{9} = -\frac{461}{9}

Final Answers:

  1. Expression 1: 373-\frac{37}{3}
  2. Expression 2: 1515
  3. Expression 3: 4619-\frac{461}{9}

Do you want details or have any questions?


Here are 5 related questions:

  1. How do you simplify expressions involving exponents with negative bases?
  2. What is the rule for multiplying negative numbers?
  3. How do you handle order of operations when both division and multiplication are involved?
  4. How can fractional results be simplified further in expressions?
  5. What is the significance of evaluating expressions with negative bases raised to even and odd powers?

Tip: Always pay attention to the signs when dealing with negative numbers in calculations. Misplacing a sign can lead to incorrect results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Arithmetic
Exponents
Order of Operations
Fractions

Formulas

-

Theorems

-

Suitable Grade Level

High School