Math Problem Statement
Résoudre les équations (E1) : |2x+1|=|x+2| et (E2) : |x2−4|=|2x+4| , puis cocher les propositions qui sont vraies.
Question 2Veuillez choisir au moins une réponse.
L’ensemble des solutions réelles de l’équation (E1) est S1={1} .
L’ensemble des solutions réelles de l’équation (E1) est S1={−1,1} .
L’ensemble des solutions réelles de l’équation (E2) est S2={0,4} .
L’ensemble des solutions réelles de l’équation (E2) est S2={−2,0,4} .
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Absolute Value Equations
Quadratic Equations
Formulas
Absolute value equation formula: |a| = |b| implies a = b or a = -b
Quadratic equation formula: ax^2 + bx + c = 0
Discriminant formula: Δ = b^2 - 4ac
Theorems
Quadratic formula theorem
Properties of absolute value equations
Suitable Grade Level
Grades 9-11
Related Recommendation
Solve the Absolute Value Equation |4 - x^2| = 2 - x
Solving Absolute Value Equations: |x - 1| = 2, |2x - 4| = 4, |3 - 2x| = 5, |x - 2| = -1
Solving Absolute Value Equations with One or Two Solutions
Solving Absolute Value Quadratic Equations |x^2 + 2x - 4| = 4
Solve the Absolute Value Equation |x + 1| = x^2 - 11