Math Problem Statement

Diketahui B = [1 -4; 3 5] dan C = [2 -5; 1 7]. Tentukan matriks X berordo 2x2 jika 3B + X = 2C!

Solution

The problem asks to find a 2x2 matrix XX given the equation 3B+X=2C3B + X = 2C, where matrices BB and CC are provided as:

B=[1435],C=[2517]B = \begin{bmatrix} 1 & -4 \\ 3 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & -5 \\ 1 & 7 \end{bmatrix}

Steps to solve:

  1. Rearrange the equation 3B+X=2C3B + X = 2C to solve for XX: X=2C3BX = 2C - 3B

  2. Compute 3B3B: 3B=3×[1435]=[312915]3B = 3 \times \begin{bmatrix} 1 & -4 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 3 & -12 \\ 9 & 15 \end{bmatrix}

  3. Compute 2C2C: 2C=2×[2517]=[410214]2C = 2 \times \begin{bmatrix} 2 & -5 \\ 1 & 7 \end{bmatrix} = \begin{bmatrix} 4 & -10 \\ 2 & 14 \end{bmatrix}

  4. Subtract 3B3B from 2C2C: X=[410214][312915]=[4310+12291415]X = \begin{bmatrix} 4 & -10 \\ 2 & 14 \end{bmatrix} - \begin{bmatrix} 3 & -12 \\ 9 & 15 \end{bmatrix} = \begin{bmatrix} 4 - 3 & -10 + 12 \\ 2 - 9 & 14 - 15 \end{bmatrix} X=[1271]X = \begin{bmatrix} 1 & 2 \\ -7 & -1 \end{bmatrix}

Thus, the matrix XX is:

X=[1271]X = \begin{bmatrix} 1 & 2 \\ -7 & -1 \end{bmatrix}

Would you like further clarification on any steps?


Here are 5 related questions you might consider:

  1. How do you calculate the determinant of matrix XX?
  2. What is the inverse of matrix BB, if it exists?
  3. How do matrix operations (like addition and scalar multiplication) affect determinants?
  4. Can you find the eigenvalues of matrix BB?
  5. What are the conditions for two matrices to be invertible?

Tip: When solving matrix equations, always carefully apply operations to each element to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Matrix Addition
Scalar Multiplication

Formulas

Matrix addition: A + B
Scalar multiplication: kA
Matrix equation: AX = B

Theorems

Matrix Operations

Suitable Grade Level

Grades 9-12