Math Problem Statement

  1. Solve the system of equations by Gauss Elimination method 10x-2y+3z=23; 2x+10y-5z=-33; 3x-4y+10z=41.without decimal value

Solution

To solve the given system of equations using Gauss Elimination, we first express the system in augmented matrix form and then apply Gaussian elimination to transform the matrix into row-echelon form, followed by back substitution.

Given system of equations:

10x - 2y + 3z = 23 \tag{1} 2x + 10y - 5z = -33 \tag{2} 3x - 4y + 10z = 41 \tag{3}

Step 1: Write the augmented matrix

The augmented matrix corresponding to this system is:

10 & -2 & 3 & | & 23 \\ 2 & 10 & -5 & | & -33 \\ 3 & -4 & 10 & | & 41 \end{bmatrix}$$ ### Step 2: Perform Gaussian Elimination We will use row operations to reduce this matrix to upper triangular form. #### Row 1: Normalize the first pivot by dividing row 1 by 10 $$R_1 = \frac{1}{10} R_1 \quad \text{(Divide row 1 by 10)}$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 2 & 10 & -5 & | & -33 \\ 3 & -4 & 10 & | & 41 \end{bmatrix}$$ #### Row 2: Eliminate the first element in row 2 by subtracting 2 times row 1 from row 2 $$R_2 = R_2 - 2R_1$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 0 & \frac{52}{5} & -\frac{31}{5} & | & -\frac{299}{5} \\ 3 & -4 & 10 & | & 41 \end{bmatrix}$$ #### Row 3: Eliminate the first element in row 3 by subtracting 3 times row 1 from row 3 $$R_3 = R_3 - 3R_1$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 0 & \frac{52}{5} & -\frac{31}{5} & | & -\frac{299}{5} \\ 0 & -\frac{11}{5} & \frac{41}{10} & | & \frac{87}{10} \end{bmatrix}$$ ### Step 3: Normalize the second pivot by multiplying row 2 by $$\frac{5}{52}$$ $$R_2 = \frac{5}{52}R_2$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 0 & 1 & -\frac{31}{52} & | & -\frac{299}{52} \\ 0 & -\frac{11}{5} & \frac{41}{10} & | & \frac{87}{10} \end{bmatrix}$$ #### Row 3: Eliminate the second element in row 3 by adding $$\frac{11}{5}$$ times row 2 to row 3 $$R_3 = R_3 + \frac{11}{5}R_2$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 0 & 1 & -\frac{31}{52} & | & -\frac{299}{52} \\ 0 & 0 & \frac{579}{104} & | & \frac{2997}{104} \end{bmatrix}$$ ### Step 4: Normalize the third pivot by multiplying row 3 by $$\frac{104}{579}$$ $$R_3 = \frac{104}{579} R_3$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 0 & 1 & -\frac{31}{52} & | & -\frac{299}{52} \\ 0 & 0 & 1 & | & \frac{2997}{579} \end{bmatrix}$$ ### Step 5: Perform back substitution - From row 3: $$z = \frac{2997}{579} = 5.175$$ - From row 2: $$y = -\frac{299}{52} + \frac{31}{52} \times 5.175$$ - From row 1: $$x = \dots$$ I will now finalize these