Math Problem Statement
- Solve the system of equations by Gauss Elimination method 10x-2y+3z=23; 2x+10y-5z=-33; 3x-4y+10z=41.without decimal value
Solution
To solve the given system of equations using Gauss Elimination, we first express the system in augmented matrix form and then apply Gaussian elimination to transform the matrix into row-echelon form, followed by back substitution.
Given system of equations:
10x - 2y + 3z = 23 \tag{1} 2x + 10y - 5z = -33 \tag{2} 3x - 4y + 10z = 41 \tag{3}
Step 1: Write the augmented matrix
The augmented matrix corresponding to this system is:
10 & -2 & 3 & | & 23 \\ 2 & 10 & -5 & | & -33 \\ 3 & -4 & 10 & | & 41 \end{bmatrix}$$ ### Step 2: Perform Gaussian Elimination We will use row operations to reduce this matrix to upper triangular form. #### Row 1: Normalize the first pivot by dividing row 1 by 10 $$R_1 = \frac{1}{10} R_1 \quad \text{(Divide row 1 by 10)}$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 2 & 10 & -5 & | & -33 \\ 3 & -4 & 10 & | & 41 \end{bmatrix}$$ #### Row 2: Eliminate the first element in row 2 by subtracting 2 times row 1 from row 2 $$R_2 = R_2 - 2R_1$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 0 & \frac{52}{5} & -\frac{31}{5} & | & -\frac{299}{5} \\ 3 & -4 & 10 & | & 41 \end{bmatrix}$$ #### Row 3: Eliminate the first element in row 3 by subtracting 3 times row 1 from row 3 $$R_3 = R_3 - 3R_1$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 0 & \frac{52}{5} & -\frac{31}{5} & | & -\frac{299}{5} \\ 0 & -\frac{11}{5} & \frac{41}{10} & | & \frac{87}{10} \end{bmatrix}$$ ### Step 3: Normalize the second pivot by multiplying row 2 by $$\frac{5}{52}$$ $$R_2 = \frac{5}{52}R_2$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 0 & 1 & -\frac{31}{52} & | & -\frac{299}{52} \\ 0 & -\frac{11}{5} & \frac{41}{10} & | & \frac{87}{10} \end{bmatrix}$$ #### Row 3: Eliminate the second element in row 3 by adding $$\frac{11}{5}$$ times row 2 to row 3 $$R_3 = R_3 + \frac{11}{5}R_2$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 0 & 1 & -\frac{31}{52} & | & -\frac{299}{52} \\ 0 & 0 & \frac{579}{104} & | & \frac{2997}{104} \end{bmatrix}$$ ### Step 4: Normalize the third pivot by multiplying row 3 by $$\frac{104}{579}$$ $$R_3 = \frac{104}{579} R_3$$ $$\begin{bmatrix} 1 & -\frac{1}{5} & \frac{3}{10} & | & \frac{23}{10} \\ 0 & 1 & -\frac{31}{52} & | & -\frac{299}{52} \\ 0 & 0 & 1 & | & \frac{2997}{579} \end{bmatrix}$$ ### Step 5: Perform back substitution - From row 3: $$z = \frac{2997}{579} = 5.175$$ - From row 2: $$y = -\frac{299}{52} + \frac{31}{52} \times 5.175$$ - From row 1: $$x = \dots$$ I will now finalize theseAsk a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Algebra
Gaussian Elimination
Systems of Equations
Formulas
-
Theorems
-
Suitable Grade Level
Advanced High School
Related Recommendation
Solve System of Equations using Gauss Elimination Method
Solve System of Equations with Gauss Elimination Method: 10x - 2y + 3z = 23, 2x + 10y - 5z = -33, 3x - 4y + 10z = 41
Solve System of Equations Using Gauss Elimination Method: 10x - 2y + 3z = 23
Solve the System of Equations 10x - 2y + 3z = 23; 2x + 10y - 5z = -33; 3x - 4y + 10z = 41 without Decimals
Solve System of Equations 10x - 2y + 3z = 23 using Gauss Elimination