Math Problem Statement

Решить систему методом Гаусса: \[ \begin{aligned} -5x_1 + 5x_2 - 2x_3 - x_4 &= 3, \\ x_1 - 4x_2 + x_3 + 2x_4 &= 3, \\ 2x_1 - 5x_2 + 2x_3 &= 1. \end{aligned} \]

Solution

The problem involves solving a system of linear equations using Gaussian elimination. The system is:

-5x_1 + 5x_2 - 2x_3 - x_4 &= 3, \\ x_1 - 4x_2 + x_3 + 2x_4 &= 3, \\ 2x_1 - 5x_2 + 2x_3 &= 1. \end{aligned}$$ ### Step-by-Step Solution Using Gaussian Elimination 1. **Write the augmented matrix:** $$\begin{bmatrix} -5 & 5 & -2 & -1 & 3 \\ 1 & -4 & 1 & 2 & 3 \\ 2 & -5 & 2 & 0 & 1 \end{bmatrix}.$$ 2. **Perform row operations to form an upper triangular matrix.** Start by making the first pivot $$a_{11} = 1$$: Divide Row 2 by $$1$$ (no change) and scale Row 1 by $$-1/5$$. 3. **Eliminate below the pivot in the first column** to set elements $$a_{21}$$ and \(a_{31}\

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Gaussian Elimination
Systems of Linear Equations

Formulas

Row operations to create an upper triangular matrix
Back-substitution to solve for variables

Theorems

Gaussian elimination method

Suitable Grade Level

Undergraduate Level (Linear Algebra)