Math Problem Statement

solve using elimination

Solve the given system of linear equations using Gaussian elimination.

Solution

This system of linear equations corresponds to the matrix equation:

1 & 0 & -3 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 4 & -4 & -1 \\ 1 & 3 & 0 & -2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$ We can solve this system using Gaussian elimination (or row reduction). I'll walk through the elimination process: ### Step 1: Write the augmented matrix. $$\begin{pmatrix} 1 & 0 & -3 & 0 & | & 0 \\ 0 & 1 & -1 & 0 & | & 0 \\ 1 & 4 & -4 & -1 & | & 0 \\ 1 & 3 & 0 & -2 & | & 0 \end{pmatrix}$$ ### Step 2: Perform row operations to reduce the matrix. **Subtract row 1 from row 3 and row 4 to eliminate the first element in rows 3 and 4:** - Row 3: $$R3 - R1$$ $$\begin{pmatrix} 1 & 4 & -4 & -1 & | & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & -3 & 0 & | & 0 \end{pmatrix} = \begin{pmatrix} 0 & 4 & -1 & -1 & | & 0 \end{pmatrix}$$ - Row 4: $$R4 - R1$$ $$\begin{pmatrix} 1 & 3 & 0 & -2 & | & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & -3 & 0 & | & 0 \end{pmatrix} = \begin{pmatrix} 0 & 3 & 3 & -2 & | & 0 \end{pmatrix}$$ The matrix now looks like this: $$\begin{pmatrix} 1 & 0 & -3 & 0 & | & 0 \\ 0 & 1 & -1 & 0 & | & 0 \\ 0 & 4 & -1 & -1 & | & 0 \\ 0 & 3 & 3 & -2 & | & 0 \end{pmatrix}$$ ### Step 3: Eliminate the second column in row 4 by subtracting an appropriate multiple of row 2. - Row 4: $$R4 - 3 \times R2$$ $$\begin{pmatrix} 0 & 3 & 3 & -2 & | & 0 \end{pmatrix} - 3 \times \begin{pmatrix} 0 & 1 & -1 & 0 & | & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 6 & -2 & | & 0 \end{pmatrix}$$ The matrix is now: $$\begin{pmatrix} 1 & 0 & -3 & 0 & | & 0 \\ 0 & 1 & -1 & 0 & | & 0 \\ 0 & 4 & -1 & -1 & | & 0 \\ 0 & 0 & 6 & -2 & | & 0 \end{pmatrix}$$ ### Step 4: Eliminate the third column in row 3 by subtracting $$\frac{2}{3} \times R4$$ from row 3 to make row 4 have a leading 1: I will continue solving the matrix through

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Gaussian Elimination
Systems of Linear Equations

Formulas

Augmented matrix form
Row reduction (Gaussian elimination)

Theorems

Gaussian Elimination Theorem
Linear Independence

Suitable Grade Level

Undergraduate level or advanced high school (Grades 11-12)