Math Problem Statement
Would you use substitute or elimination
Solution
The system of equations in the image is:
Both substitution and elimination methods would work here, but elimination may be more efficient given the structure of the equations. Let's use elimination to solve this.
Elimination Method:
Step 1: Multiply both sides of the first equation by 7 to eliminate when we add the two equations together.
So now, we have the following system:
Step 2: Add the two equations together to eliminate .
Step 3: Solve for .
Step 4: Substitute into the first equation to solve for .
Solution:
The solution to the system of equations is:
Would you like further clarification on any step or more details?
Here are some related questions:
- What is the substitution method and how does it differ from elimination?
- Can the substitution method also solve this system of equations?
- How do you check if a solution is correct for a system of equations?
- Why might elimination be more efficient in some cases than substitution?
- Can systems of equations sometimes have no solutions or infinitely many solutions?
Tip: When using elimination, it's useful to multiply the equations in a way that cancels out one of the variables immediately.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Equations
Systems of Equations
Elimination Method
Substitution Method
Formulas
Elimination: Multiply and combine equations to eliminate a variable
Substitution: Solve one equation for a variable and substitute into the other
Theorems
System of Linear Equations
Suitable Grade Level
Grades 8-10
Related Recommendation
Solve System of Equations Using Elimination: 4x + 8y = 32, 7x - 8y = -10
Efficient Method to Solve Systems of Equations: Elimination vs Substitution
Solving a System of Linear Equations: 8x + 14y = 4, -6x - 7y = -10
Solving the System of Linear Equations: -4x - 2y = -12 and 4x + 8y = -24
Solving a System of Equations Using the Elimination Method: 4x - 7y = -29 and 5x + 6y = 8