Math Problem Statement

(a^2+b^2)x^2 +2(ac + bd)x +c^2 + d^2 = 0 Solve this equation, what will be the roots?

Solution

To solve the quadratic equation

(a2+b2)x2+2(ac+bd)x+(c2+d2)=0,(a^2 + b^2)x^2 + 2(ac + bd)x + (c^2 + d^2) = 0,

we use the quadratic formula:

x=B±B24AC2A,x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A},

where AA, BB, and CC are the coefficients of x2x^2, xx, and the constant term respectively. Here:

A=a2+b2,B=2(ac+bd),C=c2+d2.A = a^2 + b^2, \quad B = 2(ac + bd), \quad C = c^2 + d^2.

Step 1: Substitute into the quadratic formula

The roots are given by:

x=2(ac+bd)±[2(ac+bd)]24(a2+b2)(c2+d2)2(a2+b2).x = \frac{-2(ac + bd) \pm \sqrt{[2(ac + bd)]^2 - 4(a^2 + b^2)(c^2 + d^2)}}{2(a^2 + b^2)}.

Step 2: Simplify the discriminant

The discriminant is:

Δ=[2(ac+bd)]24(a2+b2)(c2+d2).\Delta = [2(ac + bd)]^2 - 4(a^2 + b^2)(c^2 + d^2).

Expanding [2(ac+bd)]2[2(ac + bd)]^2:

[2(ac+bd)]2=4(ac+bd)2=4(a2c2+b2d2+2abcd).[2(ac + bd)]^2 = 4(ac + bd)^2 = 4(a^2c^2 + b^2d^2 + 2abcd).

Now expand 4(a2+b2)(c2+d2)4(a^2 + b^2)(c^2 + d^2):

4(a2+b2)(c2+d2)=4(a2c2+b2d2+a2d2+b2c2).4(a^2 + b^2)(c^2 + d^2) = 4(a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2).

Thus, the discriminant becomes:

Δ=4(a2c2+b2d2+2abcd)4(a2c2+b2d2+a2d2+b2c2).\Delta = 4(a^2c^2 + b^2d^2 + 2abcd) - 4(a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2).

Simplify:

Δ=4(a2c2+b2d2+2abcda2c2b2d2a2d2b2c2),\Delta = 4(a^2c^2 + b^2d^2 + 2abcd - a^2c^2 - b^2d^2 - a^2d^2 - b^2c^2),

Δ=4(2abcda2d2b2c2).\Delta = 4(2abcd - a^2d^2 - b^2c^2).

Step 3: Write the roots

The roots are:

x=2(ac+bd)±4(2abcda2d2b2c2)2(a2+b2).x = \frac{-2(ac + bd) \pm \sqrt{4(2abcd - a^2d^2 - b^2c^2)}}{2(a^2 + b^2)}.

Simplify further:

x=(ac+bd)±2abcda2d2b2c2a2+b2.x = \frac{-(ac + bd) \pm \sqrt{2abcd - a^2d^2 - b^2c^2}}{a^2 + b^2}.

Final Answer:

The roots of the equation are:

x=(ac+bd)±2abcda2d2b2c2a2+b2.x = \frac{-(ac + bd) \pm \sqrt{2abcd - a^2d^2 - b^2c^2}}{a^2 + b^2}.


Would you like a numerical example or further clarification? 😊

Relative Questions:

  1. What happens to the roots if a,b,c,da, b, c, d are all equal?
  2. How does the discriminant determine whether the roots are real or complex?
  3. Can this be solved geometrically when a=ca = c and b=db = d?
  4. What if a2+b2=0a^2 + b^2 = 0? Does the quadratic equation still hold?
  5. How does the symmetry of the coefficients a,b,c,da, b, c, d affect the solution?

Tip:

Always check the discriminant (Δ\Delta) to determine if the roots are real or complex before simplifying further.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Discriminant Analysis

Formulas

Quadratic formula: x = (-B ± √(B^2 - 4AC)) / 2A
Discriminant: Δ = B^2 - 4AC

Theorems

Quadratic formula theorem

Suitable Grade Level

Grades 9-12