Math Problem Statement

A random variable X has the following PMF: | X | 0 | 1 | 2 | 3 | |------|-------------|------------|-------------|-------------| | f(x) | k/2 | k/3 | (k+1)/3 | (2k-1)/6 | Find (i) the value of k (ii) the mean of X.

Solution

To solve the problem, let's determine the following:

  1. The value of kk
  2. The mean of XX using the PMF.

1. Finding the value of kk

The given PMF (Probability Mass Function) table is:

XX00112233
f(x)f(x)k2\frac{k}{2}k3\frac{k}{3}k+13\frac{k+1}{3}2k16\frac{2k-1}{6}

The property of a PMF is that the total probability must sum to 11:

f(0)+f(1)+f(2)+f(3)=1f(0) + f(1) + f(2) + f(3) = 1

Substitute the values of f(x)f(x):

k2+k3+k+13+2k16=1\frac{k}{2} + \frac{k}{3} + \frac{k+1}{3} + \frac{2k-1}{6} = 1

To simplify, find the LCM of 2, 3, and 6, which is 66. Rewrite each term with denominator 66:

3k6+2k6+2(k+1)6+2k16=1\frac{3k}{6} + \frac{2k}{6} + \frac{2(k+1)}{6} + \frac{2k-1}{6} = 1

Combine all terms over 66:

3k+2k+2(k+1)+(2k1)6=1\frac{3k + 2k + 2(k+1) + (2k-1)}{6} = 1

Simplify the numerator:

3k+2k+2k+2+2k1=9k+13k + 2k + 2k + 2 + 2k - 1 = 9k + 1

Thus, the equation becomes:

9k+16=1\frac{9k + 1}{6} = 1

Multiply through by 66 to eliminate the denominator:

9k+1=69k + 1 = 6

Solve for kk:

9k=5    k=599k = 5 \quad \implies \quad k = \frac{5}{9}


2. Finding the mean of XX

The mean (expected value) E(X)E(X) is given by:

E(X)=xf(x)E(X) = \sum x \cdot f(x)

Using the values of XX and f(x)f(x):

  • For X=0X = 0, f(0)=k2f(0) = \frac{k}{2}
  • For X=1X = 1, f(1)=k3f(1) = \frac{k}{3}
  • For X=2X = 2, f(2)=k+13f(2) = \frac{k+1}{3}
  • For X=3X = 3, f(3)=2k16f(3) = \frac{2k-1}{6}

Substitute k=59k = \frac{5}{9} into these values:

  1. f(0)=592=518f(0) = \frac{\frac{5}{9}}{2} = \frac{5}{18}
  2. f(1)=593=527f(1) = \frac{\frac{5}{9}}{3} = \frac{5}{27}
  3. f(2)=59+13=5+993=1493=1427f(2) = \frac{\frac{5}{9} + 1}{3} = \frac{\frac{5+9}{9}}{3} = \frac{\frac{14}{9}}{3} = \frac{14}{27}
  4. f(3)=25916=10916=10996=154f(3) = \frac{2 \cdot \frac{5}{9} - 1}{6} = \frac{\frac{10}{9} - 1}{6} = \frac{\frac{10-9}{9}}{6} = \frac{1}{54}

Now calculate E(X)E(X):

E(X)=0f(0)+1f(1)+2f(2)+3f(3)E(X) = 0 \cdot f(0) + 1 \cdot f(1) + 2 \cdot f(2) + 3 \cdot f(3)

Substitute the values:

E(X)=0518+1527+21427+3154E(X) = 0 \cdot \frac{5}{18} + 1 \cdot \frac{5}{27} + 2 \cdot \frac{14}{27} + 3 \cdot \frac{1}{54}

Simplify each term:

  • 0518=00 \cdot \frac{5}{18} = 0
  • 1527=5271 \cdot \frac{5}{27} = \frac{5}{27}
  • 21427=28272 \cdot \frac{14}{27} = \frac{28}{27}
  • 3154=354=1183 \cdot \frac{1}{54} = \frac{3}{54} = \frac{1}{18}

Convert 118\frac{1}{18} to denominator 2727 (since 118=354=227\frac{1}{18} = \frac{3}{54} = \frac{2}{27}):

E(X)=527+2827+227E(X) = \frac{5}{27} + \frac{28}{27} + \frac{2}{27}

Combine terms:

E(X)=5+28+227=3527E(X) = \frac{5 + 28 + 2}{27} = \frac{35}{27}


Final Answers:

  1. The value of kk is 59\frac{5}{9}.
  2. The mean of XX is 3527\frac{35}{27}.

Do you need further explanation or simplification? Let me know!

Related Questions:

  1. How do you calculate the variance of XX using the PMF?
  2. What is the cumulative distribution function (CDF) of XX?
  3. How can you check if the PMF satisfies all properties of a probability distribution?
  4. How does the mean change if we adjust the PMF values slightly?
  5. How do you calculate P(X2)P(X \leq 2) using this PMF?

Tip: Always verify that the PMF sums to 1 before proceeding with further calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability Distributions
Discrete Random Variables
Expected Value
PMF (Probability Mass Function)
Algebraic Simplification

Formulas

Sum of probabilities for PMF: Σf(x) = 1
Expected Value (Mean): E(X) = Σ [x * f(x)]

Theorems

The property of a PMF: The sum of all probabilities must equal 1

Suitable Grade Level

Grades 11-12