Math Problem Statement

Solution

Let's evaluate each expression given x=7x = 7, y=3y = 3, and z=9z = 9.

  1. z+2z + 2 9+2=119 + 2 = 11

  2. 5+x5 + x 5+7=125 + 7 = 12

  3. 2+4z2 + 4z 2+49=2+36=382 + 4 \cdot 9 = 2 + 36 = 38

  4. 152x15 - 2x 1527=1514=115 - 2 \cdot 7 = 15 - 14 = 1

  5. 6yz\frac{6y}{z} 639=189=2\frac{6 \cdot 3}{9} = \frac{18}{9} = 2

  6. 9xy\frac{9x}{y} 973=633=21\frac{9 \cdot 7}{3} = \frac{63}{3} = 21

  7. xy3+2\frac{xy}{3} + 2 733+2=7+2=9\frac{7 \cdot 3}{3} + 2 = 7 + 2 = 9

  8. 10xz910 - \frac{xz}{9} 10799=107=310 - \frac{7 \cdot 9}{9} = 10 - 7 = 3

  9. 4z3y4z - 3y 4933=369=274 \cdot 9 - 3 \cdot 3 = 36 - 9 = 27

  10. 3x2y3x - 2y 3723=216=153 \cdot 7 - 2 \cdot 3 = 21 - 6 = 15

  11. 2x+3z+5y2x + 3z + 5y 27+39+53=14+27+15=562 \cdot 7 + 3 \cdot 9 + 5 \cdot 3 = 14 + 27 + 15 = 56

  12. 5z3x2y5z - 3x - 2y 593723=45216=185 \cdot 9 - 3 \cdot 7 - 2 \cdot 3 = 45 - 21 - 6 = 18

  13. 7z(y+x)7z - (y + x) 79(3+7)=6310=537 \cdot 9 - (3 + 7) = 63 - 10 = 53

  14. (8y+5)2z(8y + 5) - 2z (83+5)29=(24+5)18=2918=11(8 \cdot 3 + 5) - 2 \cdot 9 = (24 + 5) - 18 = 29 - 18 = 11

  15. 3y+(7z4x)3y + (7z - 4x) 33+(7947)=9+(6328)=9+35=443 \cdot 3 + (7 \cdot 9 - 4 \cdot 7) = 9 + (63 - 28) = 9 + 35 = 44

  16. 6x(z2y)+156x - (z - 2y) + 15 67(923)+15=42(96)+15=423+15=546 \cdot 7 - (9 - 2 \cdot 3) + 15 = 42 - (9 - 6) + 15 = 42 - 3 + 15 = 54

  17. 2x+(4z13)52x + (4z - 13) - 5 27+(4913)5=14+(3613)5=14+235=322 \cdot 7 + (4 \cdot 9 - 13) - 5 = 14 + (36 - 13) - 5 = 14 + 23 - 5 = 32

  18. (93y)+4z5(9 - 3y) + 4z - 5 (933)+495=(99)+365=0+365=31(9 - 3 \cdot 3) + 4 \cdot 9 - 5 = (9 - 9) + 36 - 5 = 0 + 36 - 5 = 31

Would you like more details or have any questions?

Here are 5 questions you might want to ask:

  1. 如何求解二次方程?
  2. 如何计算函数的导数?
  3. 什么是三角函数的基本恒等式?
  4. 如何计算矩形的面积?
  5. 什么是对数的基本性质?

Tip: 熟悉常用的代数公式和计算方法,可以帮助你更快速地解决数学问题。

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Equations
Expressions
Fractions

Formulas

Basic arithmetic operations
Fraction calculations

Theorems

-

Suitable Grade Level

Grades 6-8