Math Problem Statement

Evaluate the line integral ∫_C (x - y) dl, where C is defined by the curve x² + y² = ax, with a > 0.

Solution

The image contains a mathematical problem involving a line integral:

C(xy)dl,\int_C (x - y) \, dl, where CC is defined by the curve x2+y2=axx^2 + y^2 = ax, with a>0a > 0.

Solution:

  1. Analyze the curve x2+y2=axx^2 + y^2 = ax: Rewrite the equation: x2+y2ax=0.x^2 + y^2 - ax = 0. This can be expressed as: x2ax+y2=0,x^2 - ax + y^2 = 0, completing the square for xx: (xa2)2+y2=a24.(x - \frac{a}{2})^2 + y^2 = \frac{a^2}{4}. Hence, the curve CC represents a circle with:

    • Center at (a2,0)(\frac{a}{2}, 0),
    • Radius a2\frac{a}{2}.
  2. Parametrize the curve CC: Using the standard circle parametrization: x=a2+a2cosθ,y=a2sinθ,θ[0,2π].x = \frac{a}{2} + \frac{a}{2} \cos\theta, \quad y = \frac{a}{2} \sin\theta, \quad \theta \in [0, 2\pi].

  3. Find dldl: The differential arc length dldl for a parametrized curve is given by: dl=(dxdθ)2+(dydθ)2dθ.dl = \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} \, d\theta. Compute derivatives: dxdθ=a2sinθ,dydθ=a2cosθ.\frac{dx}{d\theta} = -\frac{a}{2} \sin\theta, \quad \frac{dy}{d\theta} = \frac{a}{2} \cos\theta. Thus: dl=(a2sinθ)2+(a2cosθ)2dθ=a24(sin2θ+cos2θ)dθ=a2dθ.dl = \sqrt{\left(-\frac{a}{2} \sin\theta\right)^2 + \left(\frac{a}{2} \cos\theta\right)^2} \, d\theta = \sqrt{\frac{a^2}{4} (\sin^2\theta + \cos^2\theta)} \, d\theta = \frac{a}{2} \, d\theta.

  4. Substitute into the integral: The integrand xyx - y becomes: xy=(a2+a2cosθ)a2sinθ=a2(1+cosθsinθ).x - y = \left(\frac{a}{2} + \frac{a}{2} \cos\theta\right) - \frac{a}{2} \sin\theta = \frac{a}{2} (1 + \cos\theta - \sin\theta). Substitute xyx - y and dldl into the integral: C(xy)dl=02πa2(1+cosθsinθ)a2dθ.\int_C (x - y) \, dl = \int_0^{2\pi} \frac{a}{2} (1 + \cos\theta - \sin\theta) \cdot \frac{a}{2} \, d\theta. Simplify: C(xy)dl=a2402π(1+cosθsinθ)dθ.\int_C (x - y) \, dl = \frac{a^2}{4} \int_0^{2\pi} (1 + \cos\theta - \sin\theta) \, d\theta.

  5. Evaluate the integral: Split the integral: C(xy)dl=a24(02π1dθ+02πcosθdθ02πsinθdθ).\int_C (x - y) \, dl = \frac{a^2}{4} \left( \int_0^{2\pi} 1 \, d\theta + \int_0^{2\pi} \cos\theta \, d\theta - \int_0^{2\pi} \sin\theta \, d\theta \right). Compute each term:

    • 02π1dθ=2π\int_0^{2\pi} 1 \, d\theta = 2\pi,
    • 02πcosθdθ=0\int_0^{2\pi} \cos\theta \, d\theta = 0 (over a full period),
    • 02πsinθdθ=0\int_0^{2\pi} \sin\theta \, d\theta = 0 (over a full period).

    Thus: C(xy)dl=a242π=πa22.\int_C (x - y) \, dl = \frac{a^2}{4} \cdot 2\pi = \frac{\pi a^2}{2}.

Final Answer:

C(xy)dl=πa22.\int_C (x - y) \, dl = \frac{\pi a^2}{2}.

Let me know if you'd like further details or have questions! Here are 5 related problems to explore further:

  1. What is the general formula for a line integral involving a scalar field?
  2. How does one parametrize other conic sections, like ellipses or parabolas, for line integrals?
  3. How do you compute CFTdl\int_C \mathbf{F} \cdot \mathbf{T} \, dl, where T\mathbf{T} is the tangent vector?
  4. What is the geometric interpretation of a line integral over a closed curve?
  5. How would the integral change if the curve CC had a different orientation?

Tip: Always verify whether a curve is closed and simple before applying certain theorems like Green's or Stokes'!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Line integrals
Parametrization of curves
Algebraic manipulation

Formulas

Parametrization of a circle: x = r*cos(θ), y = r*sin(θ)
Differential arc length: dl = √((dx/dθ)² + (dy/dθ)²) dθ

Theorems

Green's Theorem (implicitly related)
Periodicity of trigonometric integrals

Suitable Grade Level

Undergraduate (Calculus II/III level)