Math Problem Statement

can you solve without using this formula ∫a+bcos(2θ)1​

Solution

Certainly! Let's solve the integral

23+cos(2θ)dθ\int \frac{2}{3 + \cos(2\theta)} \, d\theta

without using the formula for 1a+bcos(2θ)dθ\int \frac{1}{a + b\cos(2\theta)} \, d\theta.

Step 1: Use the double-angle identity

Recall that cos(2θ)=2cos2(θ)1\cos(2\theta) = 2\cos^2(\theta) - 1. This allows us to express the integrand in terms of cos(θ)\cos(\theta):

23+cos(2θ)dθ=23+(2cos2θ1)dθ=22+2cos2θdθ.\int \frac{2}{3 + \cos(2\theta)} \, d\theta = \int \frac{2}{3 + (2\cos^2\theta - 1)} \, d\theta = \int \frac{2}{2 + 2\cos^2\theta} \, d\theta.

Simplifying, this becomes:

11+cos2θdθ.\int \frac{1}{1 + \cos^2\theta} \, d\theta.

Step 2: Use a trigonometric identity to simplify further

Now, recall the identity:

cos2θ=1+cos(2θ)2.\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}.

Substituting this into the integral gives:

[ \int \frac{1}{1 + \frac{1 + \cos(2\theta)}{2}} , d\theta = \int \frac{2}{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric identities

Formulas

Double-angle identity for cosine

Theorems

-

Suitable Grade Level

Advanced High School