Math Problem Statement

Solve the initial value problem: y' = 2 cos(x/3) + 4 cos(3x), y(π/2) = 5

Solution

To solve this initial value problem, let's go through each part:

Given: y=2cos(x3)+4cos(3x),y' = 2 \cos\left(\frac{x}{3}\right) + 4 \cos(3x), with the initial condition y(π2)=5.y\left(\frac{\pi}{2}\right) = 5.

Step 1: Integrate yy' to find y(x)y(x)

To find y(x)y(x), we need to integrate the right-hand side of the differential equation.

y=(2cos(x3)+4cos(3x))dx.y = \int \left(2 \cos\left(\frac{x}{3}\right) + 4 \cos(3x)\right) \, dx.

This can be split into two separate integrals:

y=2cos(x3)dx+4cos(3x)dx.y = \int 2 \cos\left(\frac{x}{3}\right) \, dx + \int 4 \cos(3x) \, dx.

Integral 1: 2cos(x3)dx\int 2 \cos\left(\frac{x}{3}\right) \, dx

  1. Factor out the constant: =2cos(x3)dx.= 2 \int \cos\left(\frac{x}{3}\right) \, dx.

  2. Use a substitution: Let u=x3u = \frac{x}{3}, then du=13dxdu = \frac{1}{3} dx or dx=3dudx = 3 \, du.

  3. Substitute and simplify: =2cos(u)3du=6cos(u)du.= 2 \int \cos(u) \cdot 3 \, du = 6 \int \cos(u) \, du.

  4. Integrate cos(u)\cos(u): =6sin(u)=6sin(x3).= 6 \sin(u) = 6 \sin\left(\frac{x}{3}\right).

So, the first integral gives: 2cos(x3)dx=6sin(x3).\int 2 \cos\left(\frac{x}{3}\right) \, dx = 6 \sin\left(\frac{x}{3}\right).

Integral 2: 4cos(3x)dx\int 4 \cos(3x) \, dx

  1. Factor out the constant: =4cos(3x)dx.= 4 \int \cos(3x) \, dx.

  2. Use a substitution: Let v=3xv = 3x, then dv=3dxdv = 3 \, dx or dx=dv3dx = \frac{dv}{3}.

  3. Substitute and simplify: =4cos(v)dv3=43cos(v)dv.= 4 \int \cos(v) \cdot \frac{dv}{3} = \frac{4}{3} \int \cos(v) \, dv.

  4. Integrate cos(v)\cos(v): =43sin(v)=43sin(3x).= \frac{4}{3} \sin(v) = \frac{4}{3} \sin(3x).

So, the second integral gives: 4cos(3x)dx=43sin(3x).\int 4 \cos(3x) \, dx = \frac{4}{3} \sin(3x).

Step 2: Combine the results and add the constant of integration

Putting both integrals together, we get: y=6sin(x3)+43sin(3x)+C.y = 6 \sin\left(\frac{x}{3}\right) + \frac{4}{3} \sin(3x) + C.

Step 3: Apply the initial condition y(π2)=5y\left(\frac{\pi}{2}\right) = 5

Now we substitute x=π2x = \frac{\pi}{2} and y=5y = 5 to solve for CC.

5=6sin(π6)+43sin(3π2)+C.5 = 6 \sin\left(\frac{\pi}{6}\right) + \frac{4}{3} \sin\left(\frac{3\pi}{2}\right) + C.

Calculating each term:

  1. sin(π6)=12\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}, so 6sin(π6)=612=36 \sin\left(\frac{\pi}{6}\right) = 6 \cdot \frac{1}{2} = 3.
  2. sin(3π2)=1\sin\left(\frac{3\pi}{2}\right) = -1, so 43sin(3π2)=43(1)=43\frac{4}{3} \sin\left(\frac{3\pi}{2}\right) = \frac{4}{3} \cdot (-1) = -\frac{4}{3}.

Substitute these values: 5=343+C.5 = 3 - \frac{4}{3} + C.

To solve for CC, combine the constants: 5=9343+C=53+C.5 = \frac{9}{3} - \frac{4}{3} + C = \frac{5}{3} + C.

Subtract 53\frac{5}{3} from both sides: C=553=1553=103.C = 5 - \frac{5}{3} = \frac{15 - 5}{3} = \frac{10}{3}.

Final Answer

Thus, the solution to the initial value problem is: y=6sin(x3)+43sin(3x)+103.y = 6 \sin\left(\frac{x}{3}\right) + \frac{4}{3} \sin(3x) + \frac{10}{3}.

Would you like further clarification or have any additional questions?


Here are 5 questions related to this type of problem:

  1. How would the solution change if the initial condition was different?
  2. Can this method be applied to other trigonometric functions, like sine?
  3. What happens if we use a different frequency in the cosine terms?
  4. How would the solution look if yy' involved exponential functions instead?
  5. Can this technique be extended to solve systems of differential equations?

Tip: When integrating trigonometric functions with coefficients, always look for substitution to simplify the integration process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
Initial Value Problems
Integration
Trigonometric Functions

Formulas

y' = f(x)
y = ∫f(x) dx
Substitution in integrals for trigonometric functions

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Calculus / Advanced High School